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Abstract 
Large in-stream wood (LW) is a critical component of riparian systems that 
increases heterogeneity of flow regimes and provides high quality habitat for 
salmonids and other fishes. We present four sampling-based methods to es-
timate two-dimensional LW for a 61-hectare river restoration project on the 
South Fork McKenzie River near Rainbow, OR (USA). We manually delineated 
LW area, from unoccupied aircraft systems (UAS) multispectral imagery for 
40 randomly selected 51.46 m2 hexagonal plots. Seven auxiliary variables were 
extracted from the imagery and imagery derivatives to be incorporated in 
four estimators by summarizing spectral statistics for each plot including 
Random forest (RF) classification of segmented imagery (Cohen’s kappa = 
0.75, balanced accuracy = 0.86). The four estimators were: difference estima-
tor, simple linear regression estimator with one auxiliary variable, general re-
gression estimator with seven auxiliary variables, and simple random sample 
without replacement. We assessed variance of the estimators and found that 
the simple random sample without replacement produced the largest estimate 
for LW area and widest confidence interval (17,283 m2, 95% CI 10,613 - 
23,952 m2) while the generalized regression approach resulted in the smallest 
estimate and narrowest confidence interval (16,593 m2, 95% CI 13,054 - 
20,133 m2). These methods facilitate efficient estimates of critical habitat 
components, that are especially suited to efforts that seek to quantify large 
amounts of these components through time. When combined with traditional 
sampling methods, classified imagery acquired via UAS promises to enhance 
the temporal resolution of the data products associated with restoration ef-
forts while minimizing the necessity for potentially hazardous field work. 
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1. Introduction 

Large in-stream wood (LW) plays a critical role in ecological processes in fluvial 
systems. A primary goal in river restoration projects focusing on process-based 
restoration is the recruitment and retention of LW in the stream environment as 
LW is associated with increased sediment deposition, greater geomorphic com-
plexity, increased heterogeneity of flow regimes, and provides habitat for benthic 
macroinvertebrates that are food sources for fishes [1] [2] [3]. However, anth-
ropogenic influences associated with installation of dams and roads, and forest 
overstory removal have resulted in reduced wood delivery to mountain streams 
in recent decades [4]. 

Process-based restoration methods such as restoration to a Stage 0 condition 
that has been implemented in the Pacific Northwest often include addition of 
wood to the stream to jump start in-stream processes that depend on wood, such 
as macroinvertebrate life cycles [5] [6] [7]. Monitoring stream dynamics and 
wood retention within river restoration areas is important for assessing the res-
toration results and informing design for future restoration projects. Addition-
ally, restoration activities are unlikely to return the wood delivery process to the 
stream system without removal of the anthropogenic influences that inhibited 
the process to begin with. As such, long term monitoring is necessary to under-
stand how LW dynamics are changing with time. This is especially important at 
the South Fork McKenzie River Stage 0 restoration site which is located down-
stream of Cougar Reservoir and Dam. The dam was completed in 1963, and 
since then it has limited the potential for wood delivery both due to the regula-
tion of very high discharges that could deliver additional wood downstream, and 
the inherent barrier it poses to wood passage. 

Large wood has been measured using many methods, including transect sam-
pling, census (i.e., measuring all wood), and quadrat approaches based on a locally 
defined reach. For example, the Bureau of Land Management AIM National Aq-
uatic Monitoring Field Protocol for Wadable Lotic Systems counts large wood on 
sample reaches by tallying pieces by diameter size class [8]. The Large Woody De-
bris Index is another formalized protocol that is based on 100 m longitudinal 
transects where diameter and length of wood are measured [9]. In contrast, terre-
strial approaches like the US Forest Service Forest Inventory Analysis program, es-
timates LW by tallying pieces that intersect transects in circular subplots at azi-
muths 30˚, 150˚ and 270˚ [10]. Woldendorp et al. [11] found transect-based ap-
proaches offer acceptable levels of accuracy when the transect is of sufficient length 
to cover the range of varying sizes and distributions throughout a site. However, 
on a restoration site where thousands of logs have been placed in the restored area, 
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and a formerly single threaded channel becomes a broad multithreaded channel 
system, conventional methods are of limited utility for quantifying the LW ade-
quately enough for making inference across space and time. Measuring individual 
pieces that intersect transects would not be practical, especially when a monitoring 
project requires multiple revisits to determine whether wood is being retained 
through time. Additionally, safety issues of conventional in-stream measurement 
methods are of particular concern in fluvial environments, making these surveys 
impossible to conduct when a river is flowing during a high discharge event. In 
addition to potential dangers posed to crew members, these surveys are time- 
consuming, requiring many hours to implement. 

Imagery datasets can be time consuming to manually interpret. However, 
when paired with supervised classification methods, this effort can be greatly 
reduced. In a supervised classification, an interpreter manually classifies a subset 
of the imagery to train the classifier. A portion of the training data is withheld to 
be used as validation data, thereby assessing the performance of the classifier. 
Lastly, predictions are made to the remaining imagery. 

In this study, we pair spectral variables with results of a supervised classifica-
tion to estimate the two-dimensional area of large wood throughout the project 
site. We propose four sampling methods that utilize high resolution multispec-
tral UAS imagery to estimate total in-stream LW two-dimensional area for a 
stage 0 restoration project in the South Fork McKenzie River (USA). Our objec-
tives are to compare the LW estimates and variances for each sampling method. 

This paper demonstrates a novel approach to quantify in-stream LW by com-
bining both RF supervised classification and sampling-based estimators. Pre-
vious research by Queiroz et al. [12] classified terrestrial LW as standing snags 
or downed wood using combination of aerial imagery, LiDAR data, image seg-
mentation, and RF classification, but they did not seek to quantify the wood 
area, and therefore estimated accuracy of the classified segments. 

2. Methods 
2.1. Site Description 

The South Fork McKenzie River Stage 0 restoration project is located in the 
Western Cascade Mountains, approximately 70 km east of Eugene, OR (44.1586, 
−122.2883). The site is approximately 60 hectares with elevation ranging from 
300 to 340 m. The site receives more than 1770 mm rainfall per year. Cougar 
Dam is located six km upstream of the study area and was constructed in 1963. 
The dam effectively disconnected the channel from the surrounding floodplain, 
due to reduction in sediment deposition resulting in increased incision and ar-
moring of the channel bed. This has altered the plant community on the flood 
plain and along the riparian zone and has ultimately reduced available salmonid 
habitat relative to historic conditions. Stage 0 restoration seeks to restore processes 
that existed at the site prior to anthropogenic influence [13]. To this end, in 
2018, crews implemented a multimillion-dollar restoration project that recon-
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nected the fluvial plain with the historic channel by filling the previous channel 
with sediment and placing large wood throughout the restored area. 

2.2. UAS Monitoring 

On 23 September 2019, we acquired aerial imagery spanning the post-treatment 
site with a small UAS, the DJI Matrice 200 v2. We mounted a Micasense Altum 
combination multispectral/thermal sensor to the UAS oriented nadir relative to 
the landscape. UAS imaging required three flights that were conducted at ap-
proximately solar noon to minimize shadows. Flights were initiated at 11:59 and 
ended at 13:43 PDT (UTC-7). We recorded images of a calibrated reflectance 
panel with known albedo values prior to and following the flights. DJI Pilot 
flight planning software [14] ensured we recorded imagery with 80% front and 
side overlap between images. We produced a radiometrically-corrected ortho-
mosaic with Agisoft Metashape photogrammetry software [15]. The resulting 
multispectral orthomosaic had a ground sampling distance (GSD) of 5.88 cm 
and six spectral bands (Table 1). Note that the LWIR band was automatically 
up-sampled from a GSD of 100 cm to 5.88 cm. Additionally, we installed 12 
ground control points and recorded their locations with a Trimble GeoXH (0.1 
m combined horizontal and vertical accuracy post differential correction) GNSS 
receiver and Tornado antenna to georeference the imagery. 

2.3. Sample Design 

We generated a tessellation of 11,737 51.46 m2 hexagons within the site using 
ArcGIS Pro software [16]. We classified the hexagons as forested, wetted, or 
barren based on the dominant class within each hexagon resulting from a super-
vised classification using the using RGB orthomosaics from high resolution (3 
cm GSD) UAS imagery acquired in June 2019. 400 hexagons were then syste-
matically selected from a random start by selecting every 29th hexagon. Syste-
matic sampling was chosen over simple random sampling to ensure a spatially 
distributed sampling design. Additionally, we wanted to ensure that each of the 
three classes were represented in the sample population proportional to their 
appearance on the study site to support field sampling and measurement of other  

 
Table 1. Micasense altum multispectral sensor electromagnetic wavelength specifications. 

Band Center Bandwidth (Full width at half maximum) 

Blue (B) 475 nm 20 nm 

Green (G) 560 nm 20 nm 

Red (R) 668 nm 10 nm 

Red edge (RE) 717 nm 10 nm 

Near Infrared (NIR) 840 nm 40 nm 

Longwave Infrared (LWIR)  8 - 14 µm 

https://doi.org/10.4236/jgis.2022.146032


M. I. Barker et al. 
 

 

DOI: 10.4236/jgis.2022.146032 575 Journal of Geographic Information System 
 

conditions not related to this aspect of the study. Because the objective was to 
focus on instream conditions, only the 169 hexagons classified as wetted or bar-
ren were selected for high-resolution photosampling with a Phantom 4 Pro UAS 
(note, these data were not used in this study). 40 hexagons were randomly se-
lected from the 169 hexagons for field sampling (described in the next section). 
It was not reasonable to sample the conditions of the entire 51.46 m2 plot, so the 
plot was divided into four circular subplots that were located at hexagon center 
and 3 meters from center at azimuths 30˚, 150˚, and 270˚. There were a total of 
3858 non-forested hexagons that comprised our sampling frame (Figure 1). In 
retrospect we would have simply drawn from this non-forested population to 
simplify plot expansion However, for the sake of simplifying the analysis, we use 
a finite population approach [17] where each hexagon was considered as a pop-
ulation unit in order to estimate LW total area. 

Testing and Validation Data 
Since we intend to quantify wood across the entire study site, we needed to first 
ascertain the level of agreement between the remotely sensed data and the field 
data. Field sampling for LW involved technicians navigating to plot locations, 

 

 
Figure 1. Phase 1 South Fork McKenzie orthomosaic with non-forested sample frame hexagons and 40 field-sampled plots. 
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then visually estimating percent of wood covering each of the four 1-meter ra-
dius (3.14 m2) subplots. We also tested measuring each piece of LW in each sub-
plot to facilitate statistical scaling of two-dimensional estimates to wood volume, 
however, the approach was too laborious once crews encountered multiple plots 
where the entire plot was composed of LW. Additionally, we tested simple LW 
counts, which was less time intensive than measurement, but still too arduous 
upon encountering a LW field. 

To develop a digital dataset comparable to the field sampled LW data and to 
ultimately quantify our target parameter to estimate for all sampling frame hex-
agons, we manually delineated LW in GIS software. We conducted a heads-up di-
gitization to delineate LW in the 40 hexagonal plots by viewing the UAS-derived 
multispectral orthomosaics in ArcGIS Pro and drawing polygons around the 
visible wood (Figure 2). We obtained our target parameter by summarizing the 
area of manually delineated LW within the 40 sampled hexagonal plots. To en-
sure manually delineated wood reasonably represented conditions observed in 
situ, field technicians visually estimated percent of two-dimensional wood cover 
(i.e., 0% - 100%) in situ within each of the 4 1-meter radius subplots within hex-
agons intended for sample. After removing subplots that were occluded by ca-
nopy in the orthomosaic image, we multiplied field-observed percent wood cov-
er by subplot area (3.14 m2) to approximate wood area at subplot locations and 
compare to manually delineated wood area within subplots. The sample con-
sisted of 92 subplots with field observations of wood area. 

We examined the correlation between the heads-up manually delineated wood 
and field assessed wood area with the non-parametric Spearman rank correlation 
coefficient. Additionally, we performed a paired t-test to examine whether the 
means from the paired wood area measurements were different. 

2.4. Estimating Wood Area with Statistical Estimators 

It was inefficient to conduct a heads-up digitization of all the wood on the site,  
 

 
Figure 2. Example hexagon plot. Left frame depicts RGB hexagonal plot, middle frame is the resulting heads-up 
manual delineation of LW performed in GIS software, and right frame is the result of RF classifying LW in image 
segments. 
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for the same reason that it was inefficient to hand-measure all the wood in the 
field. Instead, we examined the feasibility of using a statistical estimator approach 
with auxiliary information to estimate the two-dimensional area occupied by LW 
and associated 95% confidence intervals within the 3858 non-forested hexagons. 
We utilized four estimators with different types of auxiliary information derived 
from the multispectral orthomosaic to facilitate expansion of plot estimates 
across a broader area (Figure 3). 

 

 
Figure 3. The flowchart illustrates the process we followed to produce wood area estimates from multispectral 
imagery using a combination of image segmentation, GIS processing, and sampling-based estimators. 
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Auxiliary information must be spatially continuous across the area of infe-
rence, as such, mean reflectance values and radiant temperature measured for 
individual spectral bands within the multispectral orthomosaic were obvious 
candidates. In addition, we may improve accuracy of the estimator if we incor-
porated information regarding whether a given location was likely to be wood or 
not wood. As such we assembled a Random Forest binary classification model to 
produce a classification of wood or not wood across the entire study area. Pre-
liminary testing with a conventional pixel-based naïve bayes supervised classifi-
cation model resulted in a model with a high degree of ambiguity. As such, we 
opted to use an object-based image analysis approach known as image segmen-
tation, which has been shown to be effective in ecological applications because it 
captures patches on the landscape that represent ecological conditions more ap-
propriately than individual pixels [18]. Then we use the resulting segments and 
associated spectral and segment attribute information as predictor variables in a 
binary (wood or non-wood) classification model. 

We used Trimble eCognition software to segment the multispectral orthomo-
saic described earlier using all six spectral bands and a seventh NDVI band. 
NDVI is a transformation of the red and NIR bands that is known to be corre-
lated positively with photosynthetic activity, and water features correspond to 
relatively low values of the index [19] [20] [21]. As such, we incorporated NDVI 
in our segmentation aiming to distinguish areas where LW bordered leafy ma-
terial and water. Each of the resulting 112,939 segments contain 40 attributes re-
lated to the input spectral information as well as information related to the 
structure and texture of each segment such as asymmetry, border index, border 
length, brightness, compactness, density, length/width, max difference, skew-
ness, standard deviations, rectangularity, roundness, and shape index which are 
described in the eCognition reference book [22]. These 40 attributes then served 
as predictor variables in a Random Forest (RF) classifier [23]. 

Random Forest is a machine learning model development algorithm that has 
gained popularity in ecological applications because it tends to be robust to 
overfitting when parameterized properly and due to its non-parametric nature, 
can account for interactions between covariates, and is largely unaffected by 
multi-collinearity [23] [24]. To train the model, we selected a 1.4-hectare subset 
of the orthomosaic image that represented the range of spectral variability and 
geomorphic conditions across the rest of the site in terms of presence of sub-
merged and unsubmerged wood, gravel bars, live vegetation, riffles, and pools. 
The training area was comprised of 8363 segments, of which we randomly sam-
pled 15%, manually classifying sampled segments as wood or not wood. 

We trained a binary supervised RF classifier on 1211 segments and assessed model 
performance using 10 repetitions of 10-fold cross-validation. Cross-validation has 
been shown to be an effective and robust approach to model performance evalu-
ation when model tuning is not part of the process because it better accounts for 
the range of model outcomes. We omitted model parameter tuning from this 
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workflow, opting to use recommended parameters of mtry = 6 (i.e., the number 
of predictor variables that are randomly sampled at each node) and number of 
trees = 500 to simplify the processing architecture and reduce processing time. 
We selected kappa as the summary metric used to optimize model performance. 
We used the resulting model to classify all 112,939 image segments in the entire 
study area as either wood or not wood. The area of the RF-classified wood seg-
ments was then summarized for each of the 3858 hexagonal plots in the sample 
frame. As a result, each of the 40 hexagonal plots randomly selected for sampling 
contains wood polygons that were both manually delineated in GIS and classi-
fied by the RF classifier (Figure 2). 

2.5. Estimators 

Estimators utilize auxiliary information and design information to make an es-
timate about a target parameter across a broad area. The target parameter here is 
two-dimensional wood area across the 3858 non-forested 51.46 m2 hexagons. 
The four estimators we developed and tested are briefly described below. More 
specifics including equations, assumptions, and associated references are de-
scribed in the supplement. 

The difference estimator (DIFF) works by postulating a relation between a 
response variable and auxiliary information [25]. The primary assumption of the 
difference estimator is that the auxiliary information explains the response rea-
sonably well. In this instance, we assume total area classified as wood from the 
RF model to be a reasonable predictor for wood area. 

The simple linear regression (SLR) estimator allows for adjustments to the 
difference estimator with the inclusion of coefficients β0 and β1. By minimizing 
the distance between a regression line and observed values with least squares 
approach, residual error is minimized. Of note, the regression estimator is not 
unbiased. However, this bias is minimized when the relationship between the 
auxiliary and target parameters are reasonably linear, and the correlation coeffi-
cient approaches 1. 

The general regression (GREG) estimator is an extension of the previous SLR 
estimator. In this case, we have seven auxiliary variables, and we incorporate 
mean values from all bands described in Table 1. Mean values for each of the six 
bands are extracted using zonal statistics where 40 hexagonal plots are the zone 
features. Additionally, we included area estimated to be wood as determined by 
the RF model. This estimator is not unbiased. However, the bias will be small 
with larger sample sizes and reasonably correlated auxiliary data. 

The simple random sampling without replacement (SRSwoR) estimator re-
quires only a measured response variable, in this case, the heads-up digitized 
wood area for the sample set of hexagonal plots. The target parameter is a fixed 
value for our population, and the randomness is only associated with the se-
lected sample. Our resulting estimate is unbiased because the expectation from 
the possible samples will equal the true population total [26]. 
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3. Results and Discussion 

Visual assessment of the wood area distribution indicates the data are right 
tailed. As a result, we used the non-parametric Spearman rank correlation coef-
ficient to assess correlation between field-estimated wood area and manually de-
lineated wood area in the 92 subplots. Spearman’s correlation coefficient (ρ) in-
dicates a high degree of correlation between manually delineated wood area and 
field estimated wood area in the subplots (ρ = 0.57, p < 0.001). This suggests that 
manually delineated wood area from UAS imagery serves as a reasonable repre-
sentation of actual wood area encountered in situ. 

We assessed differences in means between the two wood area measurements 
with a paired t-test. Results suggest there is a non-0 difference in means (p < 
0.005, 95% CI 0.17 m2 to 0.33 m2). When the CI is converted to proportion of 
3.14 m2 subplot, it ranges from 5% to 11%, which is reasonable because our 
in-field assessment was based on visual estimation of percent wood cover within 
subplots. 

The random forest classifier was trained using data partitioned by 10 repeti-
tions of 10-fold cross validation resulting in an average kappa of 0.76 (95% CI 
0.75 to 0.77), accuracy of 0.89, and out-of-bag estimate of error rate of 11.15%. 

Model performance is visualized in the confusion matrix (Table 2). The final 
model kappa was 0.75, with a balanced accuracy of 0.86, sensitivity of 0.94, and 
specificity of 0.78 where “wood” is taken to be the positive class. 

The correlation matrix (Figure 4) illustrates Spearman’s correlation coeffi-
cients, ρ [27]. The matrix visualizes correlations between the target parameter 
(i.e., manually delineated wood area, manAREA) and 7 auxiliary variables. The 
highest correlation is the coefficient associated with manually delineated wood 
area (manAREA, our target parameter) and with wood area estimated by the RF 
model (RFAREA, one of the 7 auxiliary variables) at 0.72. As a result, we applied 
RF wood area as our auxiliary variable in both the difference estimator and the 
general regression estimator with a single auxiliary variable. Field-estimated 
wood area is not presented in this matrix because it is not a variable utilized in 
any of the four estimators. 

We calculated estimates of total wood area for the area of interest, with accom-
panying 95% confidence intervals for the four estimators (Table 3). We expected 
these estimates to be biased low compared to in-site LW area due to limitations  

 
Table 2. Confusion matrix: Bold cells indicate number of segments where the RF classifi-
er prediction agreed with reference data manually classified by a human interpreter. 
White cells indicate misclassifications of the RF classifier. 

  
Reference 

  
Wood Not Wood 

Prediction 
Wood 753 90 

Not Wood 45 323 
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Figure 4. Correlation Matrix: Cells contain Spearman’s correlation coefficients (ρ). Ma-
nually delineated wood area (manAREA) is the target parameter we are estimating. 
RFAREA is measured wood area from the RF classifier, and spectral variables are mean 
reflectance values and radiant temperature in the 40 sample hex plots for the spectral 
band and lwir band, respectively. 

 
Table 3. Wood area estimates and 95% confidence intervals. 

Two-Dimensional Large Wood Area Estimate in m2 
Data acquired from South Fork McKenzie 09-23-2019 

Estimator Estimate 95% CI Auxiliary Variable(s) 

Difference Estimator 17,272 12,191 - 22,353 RF wood 

SLR w/RF Wood Area 17,269 13,219 - 21,318 RF wood 

GREG w/7 Aux Variables 16,593 13,054 - 20,133 
Mean: R, G, B, RE, NIR, LWIR 

RF wood 

SRSwoR 17,283 10,613 - 23,952 Manually delineated wood 

 
associated with remotely sensed data tending to have occlusion due to canopy. 

Estimated total LW area ranged from 16,593 to 17,283 m2 with the SRSwoR 
producing the largest estimate and widest confidence interval. In contrast, GREG 
produced the smallest estimate of LW area and narrowest confidence interval. 

The results indicate that as we incorporate more auxiliary information, we in-
crease the precision of our estimated wood area. SRSwoR has the lowest preci-
sion of the design-based estimators examined in this study. However, this me-
thod is the most straightforward to implement, requiring only manual delinea-
tion of wood area in the subplots. This results in increased efficiency compared 
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to the methods that require auxiliary information as such methods require GIS/ 
image processing beyond that of the SRSwoR approach. 

Based on kappa and accuracy metrics of the associated 10-rep 10-fold cross- 
validation used to produce the machine learning RF model, the model per-
formed relatively well. A caveat of using accuracy metrics to assess model per-
formance is the lack of the ability to objectively quantify an estimate associated 
with the model. 

Design-based regression estimators do not assume a distribution for the pop-
ulation of hex plots. Wood area is considered a fixed parameter using these re-
gression estimators, and bias is associated with the estimator itself. The differ-
ence estimator provides an interesting approach to incorporate wood modeled 
from a combination of image segmentation and a machine learning predictive 
model. Combining the results of the RF classifier with the difference estimator 
provides the added benefit of calculating estimator variance and the accompa-
nying 95% confidence interval. Although this method has greater uncertainty 
compared to the other regression estimators, the difference estimator provides 
an unbiased estimate of total wood area. 

The SLR estimator is an extension of the difference estimator and provides 
adjustments via β0 and β1 coefficients. It is unsurprising that this estimator re-
duces variance and narrows the associated 95% confidence interval when com-
pared against the difference estimator. 

Lastly, GREG with 7 auxiliary variables reduces variance even further by in-
corporating additional auxiliary information. In this step, we did not incorporate 
any transformations of bands in the form of indices, e.g., NDVI. However, 
GREG resulted in the most precise estimate compared to the other three estima-
tors examined in the study. Generating auxiliary information from a zonal sta-
tistics calculation is a straightforward process in GIS or other software. However, 
producing a random forest model to classify image segments generated in eCog-
nition requires careful implementation and some knowledge of machine learn-
ing. Therefore, the GREG estimator is also the most technically complex. This 
estimator can be simplified by removing the random forest component, but the 
certainty of the estimate will decrease. 

The wide confidence intervals are indicative of both the complexity of the site 
and the novel nature of the method. The area includes tree canopies that obscure 
the ground surface, exposed gravel beds, geomorphic features like islands, vary-
ing water velocities, and wood that is submerged in water. These features con-
found the classifier, providing a challenging backdrop of overlapping spectral 
signatures. However, the data and associated estimates of LW area serve as a 
reference condition for future monitoring activities at the restoration site. To 
conduct spatio-temporal analyses of changes in LW area, these methods can be 
readily repeated, minimizing field work in a site that can be potentially hazard-
ous to field crews. Additionally, repeated surveys of LW would otherwise not be 
feasible due to the vast amount of wood deposited during restoration activities. 
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In this instance, a crew consisting of two members was able to sample 70 
1-meter radius subplots over the course of five days. However, we acquired UAS 
imagery for the entirety of the 60-hectare site in approximately 1.5 hours. Image 
acquisitions with UAS can be conducted safely and on-demand, with minimal 
coordination required between pilot in command, local forest aviation officials, 
and other interest groups. 

Prior to the implementation of Stage 0 restoration at the South Fork McKen-
zie River, there was little to no LW present in the stream. We expect the concen-
tration of deposited LW will diminish through time as pieces are displaced 
downstream and decompose. The repeated implementation of the methods we 
propose would help quantify wood dynamics over time and imagery could be 
collected at a higher temporal resolution than is typical with traditional field 
sampling methods. Jennings [7] describes the potential for LW area to support 
macroinvertebrate biomass and secondary production. It follows that our esti-
mates of LW may be used in conjunction with these estimates to quantify 
site-level potential macroinvertebrate biomass and secondary production. 

One potential limitation to the approach presented in this paper is wood area 
that is occluded by canopy in the UAS orthomosaic. In areas occluded by cano-
py, we lack auxiliary information to estimate wood area. Further, we expect sub-
stantial recovery of the riparian vegetation in the restored area over time, so that 
wood in locations that are currently clearly visible to the UAS may be obscured 
by dense shrub or tree canopies in the future. We do not know how changes in 
the canopy cover of trees and shrubs might bias UAS-based measurements of 
large-wood area over time. Aerial LiDAR may be used to supplement aerial im-
agery, as pulses can penetrate the forest canopy and characterize attributes of the 
subcanopy, but LW can be difficult to discern from surrounding terrain [28] 
[29]. Queiroz et al. [30] demonstrated the potential of multispectral aerial Li-
DAR used with aerial imagery and image segmentation to improve classification 
accuracy of subcanopy wood area. Submerged wood pieces present additional 
challenges. However, we can partially account for wood that may lie below the 
surface of still water by modifying the stretched display of colors or viewing 
false-color composites where wood features are more prominent and delineating 
these polygons in sampled hex plots during the manual delineation step. Future 
studies may improve on these methods by estimating wood area in wetted areas 
by incorporating digital elevation models derived from LiDAR or Structure- 
from-Motion photogrammetry [31] and implementing imputation methods to 
generate the auxiliary information for the occluded area. 

4. Conclusion 

We demonstrated the applicability of sample-based estimators to provide esti-
mates for LW area in riparian restoration projects. SRSwoR is the most straight- 
forward to implement, requiring the least data manipulation, but it produces esti-
mates with the least precision. By incorporating auxiliary information and machine 
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learning classifiers, we can improve the precision of our estimates. Combining UAS 
aerial imagery with a machine learning classifier and producing estimates of woody 
material using sampling-based approaches offers an efficient way of quantifying 
material in restoration sites where LW are critical to habitat structure and flow re-
gimes. Traditional field sampling methods are time-consuming and potentially 
dangerous, especially in high-flow conditions. A single skilled technician can 
carry out the UAS survey as proposed in this paper over the course of a few 
hours compared to the multiple days it would require a field crew to implement 
a field sampling campaign of the same scale. We anticipate future studies can 
further improve upon these methods by incorporating additional auxiliary data 
such as vegetation indices and/or elevation data from LiDAR or SfM, thereby 
increasing precision and reducing dependence on machine learning classifiers. 
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Supplement 

1) Difference Estimator 
The difference estimator was originally applied in an accounting context 

where book values were assumed to be reasonably explained by audit values [25]. 
We will hold the β coefficient constant at 1. 

Using the difference estimator, we estimate the population total, Ty  as fol-
lows: 

0 ˆ
Tdif k kU Sy y D= +∑ ∑

 
where ( )0ˆ

k k k k k kD D y yπ π= = −  

and k
n
N

π = . 

We are assuming 0
k ky x= . 

Variance for estimated population mean and total can be estimated as follows: 

 ( ) ( )201 1 1
1dif i i

nVar y y y
N n n
−

= −
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 ( )  ( )2

difT difVar y N Var y= ×
 

The difference estimator formula with modified notation is from Särndal et al. 
[32]. 

2) Simple Linear Regression (SLR) Estimator 
First, we estimate our population mean lry  and multiply by our population 

size N to estimate the population total 
lrTy . 

We calculated the population mean 0 1lr xy b b µ= + , where  
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 and 0 1b y xb= − . Additionally, xµ  is the popula-

tion mean for the auxiliary variable, and x  is the sampling mean. 
We estimate variance of lry  with: 
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Then, we estimate total wood area for the population of wetted pixels: 

Tlr lry y N= ×  
Last, we estimate the variance of Tlry  with: 

( ) ( ) ( )2ˆ ˆ
Tlr lr

N N n
Var y N Var y MSE

n
× −

= = ⋅
 

Notation of SLR equations for population mean and beta coefficients above have 
been modified and originate from Avery and Burkhart [33]. Variance equations are 
modified from the regression lecture from Penn State stat 506 web site [34]. 

3) General Regression (GREG) Estimator with Multiple Auxiliary Va-
riables 

0 1 2 3 4 5 6 7GREG blue green red rededge nir lwir RFAreab b b b b by b bµ µ µ µ µ µ µ= + + + + + + +
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GREGT GREGy y N= ×
 

GREG estimated variance 
The equations below demonstrate the estimate for variance associated with 

the GREG estimator. Equations are from McConville et al. [35] with modified 
notation. 

 ( ) ( )( )21 1 ˆ1
1GREG i i

i s

nVar y m x
N N n

y
∈

 = − −  − 
∑

 
Where m̂  is the sample-estimated prediction. 

 ( )  ( )2
GREGT GREGVar N ar yVy = ×

 
4) SRSwoR 
We estimate population total, τ  as follows: 
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Our sample variance 2ˆ
yS  is estimated as follows: 

( )22

1

1ˆ ˆ
1

n

y i
i

S y
n

µ
=

= −
− ∑

 
Lastly, we estimate variance ( )ˆV τ : 
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