ADA Inspection Guide
 Curb Ramps and Push Buttons

Table of Contents:

Location 1
Intersection Condition Types. 3
Identifying Curb Ramp Styles 4
Curb Ramp Measurements. 6
Slopes 7
Dimensions 14
Detectable Warning Systems 19
Standard Comments 20
Failures Captured with Comments 22
Required and Recommended Tools 33
Calibrating Smarttool ${ }^{\text {TM }}$ levels. 34
Push-Button Measurements. 36
Clear Space Slopes \& Dimensions 36
Reach Range \& Height 37
References 38
Design Exception Tolerances 38
Measurement Rounding Guide 39

Produced by ODOT Traffic-Roadway Unit to serve as an inspection guide for ODOT certified ADA inspectors. This guide provides a general overview of definitions, methods of measure and documentation requirements that are relevant at the time of publication.

Always refer to contract documents, including: Project Plans, Special Provisions and any Contract Change Orders when question arise about built features on the project.

Direct any questions to the ADA Technical Team by calling (503) 986-3524, or e-mail at ODOTStandards@odot.state.or.us.

ODOT's Engineering for Accessibility webpage

On this webpage is information about design requirements for projects that impact ADA accessibility. Topics include: pedestrian curb ramps, sidewalks, bridges, pushbuttons, and pavement surface treatments.

Links on that page will also provide information on processes such as design exception requests, technical guidance, standard drawings and more.

More information about the inspection process is also found there. For example, the "Exhibit A" referenced on the inspection forms and the curb ramp inspection training's frequently asked questions.

Location

Corner \& Curb Ramp Numbering example

Linear Reference Method (LRM)

Hwy \# - will always be three digits e.g. 001, 009, 243, etc. Suffix - 00 is used for mainlines; connections \& frontages will always use a two-lettered suffix.
Roadway ID - This is always either I (increasing) or D (decreasing) Mileage Type - This will be 00 unless the milepoint is on a section of road listed as Z mileage (i.e. the road has been realigned)

Refer to TransGIS for existing corner numbering and for LRM verification.

Corner \& Ramp Numbering

- Always goes counterclockwise
- Uses numbers 1-8 \& 1A-8A
- Corners only have 2 ramps
- Islands only have 3 ramps

Corner 1 is always the first corner on the right side while facing the direction of increasing milepoints

When determining which highway the intersection lays on:

- Mainlines always supercede connections.
- Lower numbered highways always supercede higher numbered highways (except Hwy 091 \& Hwy 081).

LOCス101 LRM / Corner \& Ramp Numbering

Corner \& Curb Ramp Numbering at other locations

** If the ramp falls between two milepoints, use the closest milepoint to the bridge. It can be either side, before the start of the bridge or after the bridge ends. (note that this is only for bridges less than 50 feet in length or right around 50 feet).

Each diamond is a different intersection.

Note - Midblock locations always use corner numbers 1 and 4 , plus a 1 A if there is an island.

Intersection Condition Types (ICT)

There are three different intersection Condition Types which act as controls for different aspects of a curb ramp system. They set the limits for:

- Gutter Flow Slope
- Directional Curb Cross Slope
- Cross Slope One (Ramp Run One cross slope)

Intersection Condition Types / Gutter Flow Slope

Signalized or Uncontrolled (SU) - 5.0\% max.
Stop or Yield (SY) - 2.0% max.
Midblock (MB) - Roadway Grade

Exhibit: In the figure to the right, all the curb ramps at this signalized intersection have a Signalized or Uncontrolled ICT except the curb ramps that cross the separated right-turn lane. Since there is a yield sign controlling traffic for that lane, even though the intersection is signalized, those ramps have a Stop or Yield ICT.

Notes on ICT:

- Each curb ramp has its own ICT that is based on the traffic operation of the curb ramp
- If the curb ramp crosses a non-signalized commercial entrance, it's a Stop or Yield

Identifying ODOT Curb Ramp Styles

Perpendicular

Combination

There are seven (7) different ramp styles, each with a corresponding ramp inspection form. Those ramp styles are:

- Perpendicular
- Combination
- Parallel
- Unique Design UD
- Blended Transition BT
- End-of-Walk
- Cut-Through

Parallel

Identifying ODOT Curb Ramp Styles

Unique Design *photo required

Curb Ramp Measurements

Important to Know!

Dimensional measurements are recorded in $1 / 10$ ths of a foot (e.g. 1.5 ft .) and must be written with a zero if it's under 1
foot, e.g. 0.8 ft .
Slope measurements are also recorded in 1/10ths (e.g. 7.5\%) using a zero if it's under 1\%, e.g. 0.5\%

Surface Markers:

Red - used for slope measurements.
Yellow - used for dimensional measurements. Soap Stone - used to circle issues like cracks, lips or other surface deformities. Brief notes can be written over an area; for example, writing " $<1 \mathrm{ft}$ BT FLR"* and then taking a photo of that area with a tape measure and the note in view.
*Standard comments found on pg. 17-18

Consistently using this color scheme allows for easy identification of measurements or notes when others are viewing photos or the physical ramp.

Required tools for measuring ramps:

- M-D Building Products SMARTTOOL ${ }^{\text {TM }}$ digital level (hereafter referred to as
Smarttool ${ }^{\text {TM }}$ digital level) two-foot and sixinch sizes.
- Engineer scale tape measure.

The engineer scale is the lower set of numbers
Curb ramp measurements round differently in different situations
Refer to the rounding guidance table on pg. 39

Run Slope 1

Run Slope 2 \& 3

- A curb ramp's Run Slope is measured in the direction of pedestrian travel, the highest value taken from any portion of the ramp run is recorded on the inspection form.
- Every sloped panel must be measured. Do not stop at the first contraction joint. Every panel over 4.9\% is a ramp run.

Ramp with Directional Curb

Curb Ramp Measurements cross Slope 1, 2 and 3 for Ramp Runs \& D.C.'s

Ramp Runs

Cross Slope 1

Ramp with Directional Curb

Cross Slope 2 \& 3

- The Cross Slope of a ramp run is measured perpendicular to the direction of pedestrian travel; for Cross Slope 2 and Cross Slope 3, the highest value taken from any portion of the ramp run is recorded on the inspection form.
- When recording Cross Slope 1 , if the entire ramp run measures under the ICT maximum, then record only the highest value taken in the top 6 inches of the ramp.

- The Cross Slope requirements for Directional Curbs are dependent on the Intersection Condition Type.
- Use the 6 inch digital level anywhere a 2-foot level cannot fit.
- Directional Curb Cross Slope is not dependent on the Gutter Flow Slope measurement. It cannot exceed the Intersection Condition Type maximum.
- If the Directional Curb is too small to fit a level on it, lay the two-foot level where it covers the Directional Curb and the Detectable Warning System. If that slope measures 5.0% or more then the Run Slope of the Directional Curb fails.

Note - As with the 2-foot Smarttool ${ }^{\text {TM }}$ level, it is recommended that at least two 6-inch Smarttool ${ }^{\text {TM }}$ levels be available during inspections.

Curb Ramp Measurements cRs for all curbs

Curb Running Slope

All Other Curbs

- Curb Running Slope is always measured perpendicular to the curb-line.
- A six-inch Smarttool ${ }^{\text {TM }}$ level is always used to measure the Curb Running Slope.
- A 5.0\% Curb Running Slope on a Directional Curb will fail the ramp.

The Curb Running Slope is the only field on the inspection forms where the average measurement is recorded.

Best practice is to take at least 4 measurements.

Turn Space/Landing

Turn Spaces and Landings are measured and recorded the same way. The difference between the two is that a Landing serves one direction of travel (a straight through movement where a change in direction is blocked by a curb, soft non-walkable surface or some type of barrier) whereas a Turn Space serves multiple directions of travel.

Notes on Turn Spaces \& Landings:

Some Cut-Through style ramps and all Blended Transition style ramps do not have Turn Spaces or Landings. If this is the case during inspection, there is an option on the form for " N / A " when selecting if there's a Turn Space or Landing.

Flares

- 10.0% max. Slope.
- Traversable = If a hard surface a pedestrian can walk on is adjacent to flare.
Non-traversable = If a soft, non-walkable surface is adjacent to flare.
- Slope is measured from true zero (level horizon).
- Measurements are taken parallel to the curb-line (do not extend measurements beyond the Detectable Warning System).

Counter Slope

- Use a 2-foot level where it fits. If it overhangs the road pavement or sits flush against it but a true reading of Counter Slope is taken, this is OK.
- If there's no concrete gutter pan, only use a 2 -foot level.

Curb Ramp Measurements GFs \& Road Slope

Gutter Flow Slope \& Road Slope

Gutter Flow Slope

Notes on Gutter Flow Slope

- Gutter Flow Slope (GFS) maximums are determined by the Intersection Condition Type (ICT).
- Slope is not recorded as positive or negative

Intersection Condition Type maximums

- Stop or Yield (SY) - 2.0\% max.
- Signalized/Uncontrolled (SU) - 5.0\% max.
- Midblock (MB) - Roadway Grade (recorded as Road Slope on the forms).

Road Slope

A minimum of three measurements should be taken to find the nominal and most representative slope.

Ramp Measurements Ramp Dimensions

Directional Curbs

Remember...

Use the engineer scale!

When DWS is placed along the radius (curb-line)

DWS to be placed along curb when Directional Curb length is $>5.0 \mathrm{ft}$.

Run Length 1 is the length of the Directional Curb as measured along the return curb, plus the length of the Ramp Run.
There is no maximum for this length as a whole, only the Directional Curb when the Detectable Warning System is placed at the grade break (with this design there is a 5.0 foot maximum length).

Ramp Measurements Ramp Dimensions

Ramp Lengths

Run Lengths

Parallel Ramp Styles

- Run Slope 1 and Cross Slope 1 will be the same measurements recorded in the Turn Space's Y \& X slopes.
- The Detectable Warning System is always included in the TS Length Y measurement.

Unique Design Ramp Styles

- Can be seen as having just a TS and RR2, or a TS and RR3, or it could be only a single pad of concrete to serve a pushbutton (recording both RR1/TS just like a Parallel style ramp).
- A ramp that has more than three Ramp Runs isn't considered a Unique Design; but when Ramp Run 2, Ramp Run 3, or both do not exist, the ramp style is considered a Unique Design.

Unique Design (Combo type)

Familiarization of the construction plans is an important preparatory step for curb ramp inspections.

This snip is from a typical plan set that shows a ramp system with an irregularly shaped shared Turn Space.

When inspecting a ramp system like this, record the largest square or rectangular shaped area (the red and blue outlines) that can fit within the designated level area.

What's illustrated as the Turn Space/Level Area is the hatched area shown in the plans (the combined red/blue plus the yellow outline).

Most plans will designate the level area in some way. Shown in this exhibit is the ODOT hatching pattern. Although only the square or rectangular area is recorded, it is required to inspect the entire area that the plans designate as the level area.

If any of the level area outside of the recorded Turn Space is failing, the Turn Space will be recorded as failing. The entire level area as shown on the plans must pass inspection, not just the "square" that's recorded on the form.

Ramp Measurements Ramp Dimensions
Fully-Lowered Radial Turn Spaces

Lower number ODOT hwy

Mainline / old ODOT hwy

It is important to measure fully-lowered wedge shaped Turn Spaces in a consistent manner. The X and Y slopes for the Turn Spaces on these ramps will always be parallel and perpendicular to the primary roadway.

What determines the direction of the X and Y slopes is the ODOT highway, or if both roadways are ODOT, the lower numbered highway. If the ramp is off-system from a jurisdictional transfer, use the old ODOT highway as the primary roadway.
For local agency projects, use the road with the higher functional class or possibly whichever road is parallel to an ODOT highway as the primary roadway. If questions arise about off-system intersections, contact the ADA Inventory Team (contact info listed on title page).

The Y axis is oriented in the same direction as the crossing for the ODOT Mainline or higher functional class roadway (the primary roadway), while the X axis (Cross Slope) is perpendicular to the crossing.

Turn Space dimensions

Measure the largest square that fits within the wedge shaped Turn Space for the X and Y lengths. Remember though that the slopes in the entire Turn Space area need to be compliant.

Detectable Warning Systems DWS or Truncated Domes (TD)

DWS Inspection Criteria

- The DWS must completely cover the full width of the ramp opening for a depth of 2 feet.
- The leading edges of the DWS panel may have a gap no larger than 2 inches around the sides or to the back of the curb.
- A damaged panel will fail the ramp. Damage can be cracks, major chips or warping.
- Safety Yellow is the ODOT standard for the DWS high contrast color. Other colors require a Design Exception.
- Bubbling under a DWS panel that causes lips or a failing slope will fail the ramp and is recorded as an Improperly Installed Truncated Domes (IITD).
- Cut panels must maintain dome spacing by visual inspection.

Note - On cut-through islands where there is no curb the DWS is placed up to the pavement and the 2 " gap still applies.

Standard Comments

COMMENTS:	FORMAT:	DESCRIPTION:
	CRK [LOCATION]	Crack on a specified location of concrete from the list on the next page
	DO	Drop Off within proximity limits
	EXP	Curb Exposure is less than 3 inches
	GB [LOCATION]	Grade Breaks are NOT perpendicular on specified area from list on the next page
	ICRR\#	Inconsistent Ramp Run \#
	INLET XING	Inlet is within the Crossing
	STR	Striping Issue
	\#FT BT RR/DR	Length of Sidewalk Between Ramp Runs or Driveway
	COMMENTS	DO NOT FAIL RAMPS
LIPS	[MEASURE] IN LIP AT [LIP LOCATION] /[OBJECT*]	Depth in Inches of Lip at a Location or Object listed on the next page
	[MEASURE] IN [LIP TYPE] LIP	Depth in Inches from certain Lip Type listed on the next page
TRUNCATED DOME	[OBJECT] ON TD	Object, from list on next page, ON Truncated Dome
	CIR TD	Cast Iron Truncated Domes
	RED TD	Red Truncated Domes
BACK OF RAMP OBSTRUCTION	BORO [OBJECT]	Back Of Ramp Obstruction by Object, from list on next page
OBSTRUCTING PEDESTIAN ROUTE	[OBJECT] OPRT	Object, from list on next page, Obstructing Pedestrian Route
OBJECT ON RAMP	[OBJECT] ON [LOCATION]	Object, from list on next page, ON a Location from the next page
OBJECT BETWEEN RAMPS	[OBJECT] BT RP	Object, from list on next page, Between Ramps
WITHIN PROXIMITY LIMITS	[OBJECT] WPL	Object, from list on next page, Within Proximity Limits
INLET/CATCH BASIN	INLET [INLET LOCATION]	Inlet AT Location from list on next page
END OF WALK	BMTS	Bottom Turn Space
	BMTS X [TURN SPACE X] AND Y [TURN SPACE Y]	Bottom Turn Space in Comments when two Turn Spaces exist
SURFACE TYPE	AC RP	Asphalt Ramp
	BRK RP	Brick Ramp
	MST	Mixed Surface Type
OTHER COMMENTS	CRS OPP	Curb Running Slope Sloping Opposite Direction
	NO RR\#	No ramp run 2 and/or 3
	RCRB 1	Return Curb on 1 Side
	RCRB 2	Return Curb on Both Sides
	RR\# NO SWLK	Ramp Run leads to no where
	RR\# OPP	Ramp Run (1, 2, or 3) Sloping Opposite Direction
	SWLK EQL RR\#	Sidewalk Consistent With Ramp Run (2 or 3)
Updated: 01/09/2020	\#FT SWLK BT RR\# TS	Length of Sidewalk Between Ramp Run and Turn Space

Standard Comments

```
|}\begin{array}{l}{\mathrm{ Oregon}}\\{\mathrm{ Department }}
    l
```

 ADA Ramp Inspection Forms
 List of New Construction
 Standard Comments

[MEASURE]: HALF, 1, 2,
3, etc . . .

BRR1 Bottom of Ramp Run 1 (Only if no curb exists)
ETS Edge Of Turn Space
FOC Face of Curb
FOG Front Of Gutter
TD Truncated Domes

WPL Within Proximity Limit

BVL Beveled

SGP Traffic Signal Pole
SM Survey Marker
TLP Utility Pole
BARR Concrete Barrier/Guardrail
TC Trash Can
TR Tree
WH Weep Hole
WM * Water Meter
WV* Water Valve
[INLET LOCATION]: BT RP Between Ramp
FOC Face Of Curb
FOG Front Of Gutter
NR FLR Near Flare
NR RR\# Near Ramp Run 2 or 3
WPL Within Proximity Limits
BT RP Between Ramps
FLR Flare
RR\# Ramp Run
TS Turn Space
WPL Within Proximity Limits
SL\# W\# Slope X and Turn Space Width
SL\# L\# Slope Y and Turn Space Length

Standard Comments

Failing comments on the inspection forms

1. CRK - Crack: cracks anywhere on the ramp system; RR1, RR2, TS, etc.
2. DO - Drop Off: a vertical drop off greater than 6 inches anywhere in the circulation path (not counting the curb to the street).
3. EXP - Exposure: if the height of the curb between the two ramps is under 3 inches tall.
4. GB - Grade Break: any non-perpendicular grade break in the pedestrian path*, e.g. between any Ramp Run and the Turn Space.
5. ICRR_- Inconsistent Ramp Run \#: when there is a variance of run slope of more than 1.5% (uses number of Ramp Run e.g. ICRR1, ICRR3, etc.).
6. INLET XING - Inlet in Crossing: when a sewer grate is within the marked crossing.
7. STR - Striping: used when there is no $4 \times 4 \mathrm{ft}$. Clear Space outside the ramp opening within the marked crossing.
8. _._FT BT_- [\#] Feet Between [ramp element]: when there is less than the required distance between flares, ramps, or a ramp run and driveway.
*The Grade Break comment is not only for non-perpendicular grade breaks. A panel that is rounded down or cupped up on the edges from poor finish work could also be captured as a GB comment. If there's a grade break in a panel and an ICRR comment doesn't seem applicable, use the GB comment.

- These standard comments record issues that will result in a ramp's failure but that aren't captured in any of the form fields.
- Be sure to record these issues in the Comment box if one of these scenarios exists... even if the ramp has a Design Exception for it.

Inconsistent Ramp Run - ICRR1, ICRR2, ICRR3, etc.

Defining ICRR...

ICRR: A general rule of thumb is that the difference in the Running Slope greater than 1.5\% anywhere along the Ramp Run causes an Inconsistent Ramp Run.

Note:

Some ramp systems have more than the typical number of Ramp Runs, sometimes a plan set will show Ramp Run 4 or 5 . In these cases, Ramp Run 2 or 3 leads to a second level area. The ramp run continuing from the second level area would then be Ramp Run 4 or 5 depending on the layout.
When this is the case, if a long ramp run has one or more level rest areas within its length, it is not an Inconsistent Ramp Run. Be sure to use the correct Ramp Run number given in the plans when entering the applicable standard comments into the Comment box.

The idea behind the Inconsistent Ramp Run comment is to capture when the surface of a ramp run is not a planar line. A 1.5% difference between two adjacent panels often times won't cause any issues or even be distinguishable, but it's up to the inspector to determine if a ramp run is true and straight and free from visible humps or sags.

In the 2021 Standard Specifications section 00759.50
Il a) "The top and face of structures shall be true and straight, free from humps, sags, or other irregularities. The surface shall not vary more than $1 / 4$ inch from the edge of a 12 foot long straightedge laid on the top or face of the structure, except in curves."

Standard Comments

Failures captured with comments

Inconsistent Ramp Run - ICRR1, ICRR2, ICRR3, etc.

Where to compare slope measurements to check for an ICRR...

Compare the slope measurement from one panel to the next to check for an inconsistent ramp run. When looking at the ramp, the entire ramp run should look straight and true without any humps or sags.

Any surface deformities should be checked. The 1.5\% number is not a hard rule to follow to determine an inconsistent ramp run, but if the ICRR comment is used, the difference between the two measured run slopes is typically at least 1.5%.

When checking for an ICRR, compare panel 1 to panel 2, then panel 2 to panel 3. Panel 1 will not be compared to panel 3.

Standard Comments

Grade Break - GB TS, GB RR1, GB FLR, etc.

Grade Break -

This comment can also be used to show that there's a Grade Break on a Turn Space, Ramp Run, Flare, Between Ramps, or Within Proximity Limits.

Grade Break comments that are not referencing perpendicular grade break issues are referring to areas of a panel that either round off on the edges or otherwise have a change in grade that an Inconsistent Ramp Run comment wouldn't accurately capture (i.e. a break in the Cross Slope direction).

Standard Comments
Failures captured with comments

Striping - STR

Striping - This comment is used when Ramp Run One is not parallel to the crossing and there is a restricted Clear Space in front of the ramp. This Clear Space is a 4 foot by 4 foot ($4^{\prime} \times 4^{\prime}$) area outside the ramp opening within the marked crossing.
This is different from a Clear Space for Pushbuttons (see pg. 36).
The Clear Space should be free from any portion of the striping that marks the crossing. If circumstances allow, this area should also be clear of any sort of gas valve, manhole cover, or other objects that could make traversing the area problematic.

Standard Comments

Inlet in Crossing - INLET XING

If any part of an inlet is in front of the ramp opening the INLET XING comment is used, even if there is an approved grate with a Design Exception.

Standard Comments

Failures captured with comments

. feet Between [RAMP ELEMENT]

0.OFT BT FLR, O.OFT BT RP, O.OFT BT DR

Anytime the minimum distance requirements are not met in these scenarios, the measurement (as constructed) is used in the first half of the comment followed by the ramp element.

Feet Between Flares

Standard Drawing RD912

Feet Between Ramps

Standard Comments

Failures captured with comments

. feet Between [RAMP ELEMENT]

0.OFT BT FLR, O.OFT BT RP, O.OFT BT DR

The 5 foot standard separation is required between two parallel style ramp runs whether the ramp run is on a curb ramp or a driveway. See applicable drawings for the style of driveway near the curb ramp system. A Design Exception will be required if this standard is not met.

Note - This 5.0 foot separation applies only on ODOT right-of-way. Inspectors should measure the separation between curb ramps and driveways only on the ODOT right-of-way.

Feet Between Driveway

Standard Drawing RD725

Anytime the minimum distance requirements are not met in these scenarios, the measurement (as constructed) is used in the first part of the comment followed by the ramp element.

Standard Comments

Failures captured with comments

Exposure - EXP

Curb Exposure

The Exposure comment is for noting when the curb reveal is under 3 inches between either:

- two adjacent Ramp Runs

OR

- two adjacent Flares

The requirement as defined in Standard Drawings RD912 and RD920 (RD920 pictured) is that the entire length of curb between these two points be anywhere from 3 inches to full curb-height.
8. When 2 ramp runs are immediately adjacent, the curb exposure (E) between the adjacent side may range between $3^{\prime \prime}$ and full design exposure.

Standard Comments

Cracks - CRK

Cracks that are in the pedestrian path will fail the ramp (except for hairline cracks that may form during the curing process).

These comments would be "CRK FLR 1" or "CRK FLR 2". If it fails the ramp, make sure that is clear on the form. The current version has a checkbox to select if the crack fails the ramp.

Standard Comments

Failures captured with comments

Drop Off - DO

A Return Curb that has no obstruction preventing pedestrians from stepping off of it is an example of a Drop Off. There are other situations that could require a Drop Off comment and further discussion with the ADA group may be needed.

Required \& Recommended Tools

Required tools

- Two-foot Smarttool ${ }^{\text {TM }}$ digital level (preferably two, either Gen 2 or 3)
- Six-inch Smarttool ${ }^{\text {TM }}$ digital level (preferably two)
- Plumb Bob
- Engineer scale measuring tape
- Concrete markers (lumber crayons, paint crayons if removable with water)
- A tablet to fill out the inspection forms electronically or paper Inspection forms with writing instrument

Recommended tools

Example field inspection kit

- Push broom
- Flat-nosed shovel
- Leaf blower
- Toolbox
- Infra-red temperature gun
- Per ODOT Specifications, only the M-D Smarttool ${ }^{\text {TM }}$ digital level (two-foot \& six-inch) can be used for curb ramp inspections.
- Replacement batteries

Calibrating Smarttool ${ }^{\text {TM }}$ Levels

Instructions:

(These apply to both the Gen 2 and six-inch digital levels)

FIG. 1
Note - Gen 3 levels (water resistent with the back-light) have an autocalibration process where the button only needs to be pressed once to be begin the calibration process. The level will need to be placed in the same positions as the Gen 2 when it beeps. The display will show which way should face up, then beep to indicate when to change orientation.

1. Place the level on a flat surface and mark two of its edges, so that it can be replaced in the same spot for each step.
2. Once the reading on the LCD display settles, press the CAL1 button.
3. Rotate the level 180°, and once again after the reading on the display settles, press CAL2.

Calibrating Smarttool ${ }^{\text {TM }}$ Levels

4. Place the level upside down, and repeat the previous steps.
*Be sure the level is placed in the same spot as before.
m 5. To calibrate for plumb, the same procedure as steps 1-4 are followed, but with the level placed against a vertical surface. After this, calibration is complete.

Tip for calibrating:

Find a smooth, flat surface to use for calibration. Use the soap stone to mark around the edges of the level, making an "L" shape. Using this mark, replace the level to the same spot for each step in

Push Button Measurements

Paved Shoulder (PS)

Ramp Run (RR)

Back-In Maneuver (BM)

For other Clear Space Surface Types, see Exhibit " C ".
X and Y slope requirements for Clear Spaces are a maximum of 2.0% for both directions.

The requirement for the X and Y lengths are different and vary depending on the Clear Space Surface Type. The location of the push button (PB) and placement can be found in the plans, which defines the Clear Space.

Push Button Measurements

The maximum allowable reach range is 0.83 of a foot (10 inches), and the acceptable height is anywhere between 3.5 to 4.0 feet. ODOT's standard is that a button be accessed using a side-reach or head on, with the pedestrian parallel to the crossing.

A curb or sloped area of concrete may be underneath the ten inch reach zone and the pushbutton still considered accessible. As long as every part of the Clear Space's slope is 2.0% or less.

There must be a 12 inch buffer from the back of the Clear Space to the foundation of the pedestrian pole.

The plumb bob is used to measure reach range. Hold the line to where the weight is above the closest edge of the Clear Space. Measure from the center of the pushbutton to the string-line and that is the Reach Range distance.

The arrow embossed on the pushbutton or on a sign near the pushbutton should point in the direction of the crossing, being parallel with the direction of travel.

Push Button Reach Range \& Height

With the Push Button in this orientation, the Clear Space can be in any of these out-lined positions or in between them. The button can be thought of as an anchor, with the button and a pedestrian having an arm extended sideways being the determining factors in how far the rectangular Clear Space can rotate around the pole.

References

From Roadway Tech Bulletin RD19-02B, 12/16/2020:

Curb Ramp Criteria		Approved Design Exception Value Exceeds	Construction Tolerance	Example Approved Design Exception Value	Example Allowed Inspection Value
Running Slope		7.5%	$+0.8 \%$	7.7%	8.5% max
Curb Running Slope		7.5%	$+0.8 \%$	8.0%	8.8% max
Counter Slope		4.0%	$+1.0 \%$	4.8%	5.8% max
Cross Slope		1.5%	$+0.5 \%$	1.8%	2.3% max
Gutter Slope	Stop/Yield Controlled	1.5%	$+0.5 \%$	2.5%	3.0% max
Gutter Slope	Uncontrolled	4.5%	$+0.5 \%$	6.0%	6.5% max
Gutter Slope	Midblock	Roadway Profile Grade	$+0.5 \%$	5.5%	6.0% max
Flare Slope		10%	$+0.8 \%$	11.5%	12.3% max

References

Ramp measurement rounding guide

Rounding Guide:

Rounding to the nearest tenth	Round up	Round down
Ramp Runs	\checkmark	
Turn Space/Push Button Clear Space		
Push Button Height (3.8 and up)		
Push Button Height (under 3.8)		\checkmark
Push Button Reach Range	No rounding, measure to hundredths	
FT Between Flares, Ramps, Driveways		\checkmark

