OREGON 2017 NON-ROAD DIESEL ENGINE INVENTORY STUDY FINDINGS

Presented by Rick Baker <u>Eastern R</u>esearch Group, Inc. (ERG)

APRIL 29, 2020

Project Team

- Project Scope
- Data Collection Approach
- Emissions Modeling
- □ Key Findings
- Validation of Results
- Conclusions/Recommendations

Eastern Research Group

Lead Contractor

Good Company

Public fleet survey lead

Oak Leaf Environmental

Logging sector survey lead, technical support for validation of study findings

- Authorized by House Bill 5006 in 2017
- Study conducted September 2018 April 2020
- Estimate non-road diesel equipment emissions for Oregon
 - Replace current EPA MOVES-Nonroad model defaults
 - □ Key inputs # units, hp, hours/year, age distribution
 - Improve accuracy using bottom-up activity estimates
 - Provide updates for emission reporting requirements and air quality modeling
 - Provide basis for future year emission estimates
- Characterize equipment owners/operators
 - Identify targets for potential grant/subsidy programs (retrofit, repower/replacement)

- Diesel non-road equipment > 25 hp operating in Oregon during 2017
 - 65 equipment types (e.g. tractors, backhoes, portable generators)
 - Excludes locomotives, commercial marine vessels, aircraft
- Characterize activity and emissions (criteria, GHGs, toxics)
 - 2017 calendar year
 - County-level
 - □ Temporal resolution annual, typical summer weekday

□ 3-pronged approach tailored to operator/industry categories

- □ Approach #1 Public Fleet Surveys
 - City, county, airports, marine ports, special districts, other agencies, schools/colleges/universities, municipal solid waste/material recovery
 - □ Known locations, easy to ID/contact
 - Attempt a full "census"

DATA COLLECTION APPROACH

Approach #2 - Random Sample Surveys

- Agriculture, logging, surface mining, crane/rigging companies
- Numerous operators, difficult to generalize equipment use
- Strong emphasis on data confidentiality
- Active trade association support was key to encouraging participation and ensuring validity of results for each category

- □ Survey Details Approaches 1 and 2
 - Equipment type
 - 🖵 Engine HP
 - Model year
 - Annual hours / temporal allocation
 - Location challenging for some equipment
 - □ Fuel consumption generally fleet-level

DATA COLLECTION APPROACH

□ Approach #3 - Industry-Specific Profiles

- Primarily construction sectors highway/road, commercial buildings, single family homes, utility work
- Also well drilling and agricultural support services
- Detailed project information available (e.g. # single family housing permits issued by county in 2017)
- Develop standardized project task lists and equipment productivity profiles
- Combine with available project details to estimate total activity

- □ Approach #3 Data Collection Process
- Developed standardized task lists and equipment productivity estimates in consultation w/ AGC, other industry stakeholders
- □ Solicited subject matter expert input to account for
 - Oregon-specific practices and task frequencies
 - Equipment type preferences
 - Regional variations (e.g. blasting/crushing required for site prep in Central Oregon)

DATA COLLECTION APPROACH

- □ Approach #3 Data Collection Process Continued
- Conservatively estimate equipment needs for each task element
- Link activity profiles with physical quantities such as
 - Bid-item quantities for highway projects ODOT
 - New single-family housing units Census Bureau permit records
 - Square feet of building installation Dodge Analytics
 - Well drilling depths OWRD
- Estimate hours of use by equipment type and hp for each project
- Combine with engine age distributions (based on a separate industry survey) to estimate emissions

- Process survey and industry profile information (QA, gap-fill)
- □ Apply scaling factors and extrapolate activity to state level
- Allocate to county level by industry sector
- Adjust engine load factors where possible
- Run EPA MOVES-Nonroad model using updated hours of use, hp, and model year distributions
- Compare estimates from the current study with EPA MOVES model defaults

- Agriculture has the highest fuel consumption at the state level, followed by logging and construction
- Other sectors < 10% each
- Average agricultural tractor age (22 years) results in a relative increase in criteria pollutant emissions

2017 Statewide Annual Fuel Consumption by Sector

2017 Statewide Annual PM_{2.5} Emissions by Sector

- Geographic regions contribute various amounts to statewide emission totals
 - Portland Metro and Willamette Valley regions have the highest contributions to PM_{2.5} emissions, followed by Southeast/South Central and Northeast regions

2017 Statewide Annual PM_{2.5} Emissions by Region

- The relative contributions to activity and emissions can vary substantially across counties
- Examples demonstrate prevalence of different industries
 - Multnomah Construction
 - Lane Logging
 - Klamath Agriculture

Annual PM_{2.5} Emissions by Sector – Selected Counties

200

- Total statewide fuel consumption substantially lower than EPA defaults
- Total criteria pollutant emissions similar to EPA defaults
- Key differences across equipment categories
 - Construction/Mining
 - Logging
 - Industrial

■ MOVES ■ Study

- Engine tier level distributions have a substantial impact on emissions
- Survey data shown for key sectors
- MOVES tends to overestimate fraction of Tier 4s, underestimate Tier 0s
- Differences vary by industry sector

2017 Engine Tier Level Distributions – Key Sectors

Agricultural Equipment

Construction/Mining Equipment

- Summer season fractions estimated by sector
- Most sectors have a third or more of their activity during summer
- Strongest summer peaks seen for agriculture, logging, boating and lawn & garden

Summer Season Activity and Emission Fractions

□ Validation ensures study results are consistent & reasonable

- Two types of validation
- I. Internal consistency checks
 - e.g. compare reported vs calculated fuel consumption
 - Example from Agriculture survey

□ II. External consistency checks

- Compare study's fuel consumption and activity estimates at the sector level with independent data sources
 - □ EIA Fuel Oil and Kerosene Sales Survey (FOKS)
 - Agricultural Census
 - Economic Census for Construction
 - Other sources e.g. FAA data for airport activity, USCOE data for marine ports

Comparison with FOKS nonroad diesel fuel sales estimates

2017 Statewide Fuel Consumption Comparison (M gallons)

Study estimates somewhat higher fuel consumption than FOKS
Primary difference in the Logging/Other sector

The study provides a comprehensive assessment of nonroad diesel equipment activity and emissions for Oregon

Oregon is just the third state to develop a bottom-up, statewide profile for these equipment

The findings represent a substantial improvement to the activity and emission estimates used by the State compared with EPA's MOVES-Nonroad model

Key findings

- MOVES generally over-estimates activity/GHGs
- Total CAP emission estimates generally consistent with MOVES at the state level, but findings shed light on county and region level distributions
- Agriculture sector dominates at the state level, followed by logging and construction
- MOVES substantially underestimates logging activity and emissions
- MOVES substantially overestimates construction activity and emissions, but sector is still notable in certain counties

Remaining Uncertainties

- Certain emission estimates were based on limited data
 - Large landfill operations
 - □ Surface mining fuel efficiency factors (tons produced/gallon)
- Lacking Oregon-specific operation information for Transportation Refrigeration Units (~6% of total gallons)
- Significant uncertainty for railway maintenance equipment activity and emissions (~0.5% of total gallons)
- Future year activity and emissions projections are needed
 - Determine which industries and regions are expect to grow rapidly, which equipment are turning over the fastest, etc.

EMISSIONS MODELING PARAMETERS

Fundamental emissions equation

Emissions_p/yr = \sum (MYR) \sum (SCC) \sum (HP) Pop * Power * LF * A * EF_p

Where:

Pop = *Number* of engines

Power = Average hp (for specific hp group)

LF = Load factor (% of rated power)

A = Activity (hr/year)

 $EF_p = Emissions$ for pollutant p (grams/bhp-hr) – function of model year \sum (SCC) = summation over each equipment type \sum (HP) = summation over each equipment hp group \sum (MYR) = summation over each equipment model year

