

13585 N.E. Whitaker Way • Portland, OR 97230 Phone (503)255-5050 • Fax (503)255-0505 www.montrose-env.com

Project No. 5702

SOURCE EVALUATION REPORT

Bullseye Glass Company Portland, Oregon

Glass Furnace T7

Baghouse BH-1 (Inlet & Outlet)

Particulate Matter

Total Chromium and Hexavalent Chromium Data Collection

Test Dates: April 26 – 29, 2016 Report Issued: June 9, 2016

Test Site:
Bullseye Glass Company
3722 SE 21st Ave
Portland, OR 97202

Report ID: HORIZON ENGINEERING 16-5702

DEPT OF ENVIRONMENTAL QUALITY RECEIVED

JUN 1 0 2016

NORTHWEST REGION

	·							
				·		·		
					·		·	
							-	
			•					

TABLE OF CONTENTS

		Page #
1.	QUALITY STATEMENT	5
2.	CERTIFICATION	6
3.	INTRODUCTION	7
4.	SUMMARY OF RESULTS	8
5.	SOURCE DESCRIPTION AND OPERATION	13
6.	SAMPLING AND ANALYTICAL PROCEDURES	15
7.	DISCUSSION	17

APPENDIX	<u> Page #</u>
Abbreviations & Acronyms	20
Nomenclature & Drift Correction Documentation	23
PM & Flow Rate	
Results and Example Calculations	26
Field Data	31
Sample Recovery Field Data & Worksheets	55
Blank Corrections	59
Laboratory Results, Worksheets & COC	61
Traverse Point Locations	128
Cyclonic Flow Measurement	131
Production/Process Data	132
Calibration Information	
Meter Boxes	144
Calibration Critical Orifices	148
Standard Meter	150
Pitots	151
Shortridge Micromanometer	157
Magnehelic Gauge	159
Thermocouples and Indicators	160
Nozzle Diameters	173
Barometer	174
QA/QC Documentation	
Procedures	176

Correspondence	
Source Test Plan and Correspondence	180
Quality Assurance Documentation	
MAQS QSTI/QI Certification Dates	198
Qualified Individual (QI) Certificates	199
QMS Statements of Conformance	205
Personnel Qualifications	219
Total Chromium and Hexavalent Chromium Data Collection	
Description of Total Chromium and Hexavalent Chromium Testing	235
Raw Analytical Test Results for Cr and Cr+6	236
Field Data Sheets Relating to Cr and Cr ⁺⁶ Testing	249

1. QUALITY STATEMENT

I certify that this testing was performed in accordance with Montrose Air Quality Services (MAQS) Quality Assurance Manual (QAM).

Thomas Rhodes, EIT, QSTI District Manager

Signature

Date

Name, Telephone Number and E-mail address of AETB

Horizon Engineering, an affiliate of Montrose Environmental 503-255-5050

trhodes@montrose-env.com

Name and E-mail Address of the Qualification Exam Provider

Source Evaluation Society (SES) gstiprogram@gmail.com

2. CERTIFICATION

2.1 Project Manager

I hereby certify that the test detailed in this report, to the best of my knowledge, was accomplished in conformance with applicable rules and good practices. The results submitted herein are accurate and true to the best of my knowledge.

Name: Jason French, QSTI

Signature

Date 5/25/16

2.2 Senior Report Review

I hereby certify that I have reviewed this report and find it to be true and accurate, and in conformance with applicable rules and good practices, to the best of my knowledge.

Name: Andy Vella, PE, QSTI

Signature

Date 2016.05.26

2.3 Report Review

I hereby certify that I have reviewed this report and find it to be true and accurate, and in conformance with applicable rules and good practices, to the best of my knowledge.

Name: Michael E. Wallace, PE

Signature

Date 5/25/16

3. INTRODUCTION

3.1 Test Site:

Bullseye Glass Company

3722 SE 21st Ave

Portland, OR 97202

3.2 Mailing Address:

Same as above

3.3 Test Log:

Baghouse, BH-1, Inlet and Outlet: PM

Test Date	Run No.	Test Time
April 26 – 27, 2016	1	17:30 (4/26) – 09:30 (4/27)
April 27 – 28, 2016	2	17:30 (4/27) – 09:30 (4/28)
April 28 – 29, 2016	3	17:00 (4/28) 09:00 (4/29)

Summary: Three valid runs: (All runs were valid runs) Inlet and outlet of baghouse was tested simultaneously.

3.4 Test Purpose: Performance testing for baghouse, BH-1.

3.5 Background Information: None

3.6 Participants:

Montrose Air Quality Services Personnel:

Jason French, QSTI, Team Leader, Calculations, and Report

Review

Chris Hinson, QSTI, Field Technician

Joe Heffernan, QSTI, Field Technician

John Lewis, QSTI, Field Technician

Mihai Voivod, QSTI, Field Technician

Brett Sherwood, QI, Field Technician

Patrick Todd, Field Technician

Brandon Crawford, Field Technician

Josh Muswieck, Field Technician

Paul Berce, Field Technician

Sleight Halley, Field Technician

Thomas Rhodes, EIT, QSTI, Project Coordinator & Report Review

Michael E. Wallace, PE, Data Reduction, Calculations and QA/QC

Andy Vella, PE, QSTI, Senior Report Review

Mauri Fabio, Technical Writer

Test Arranged by: Dan Schwoerer, Bullseye Glass Company

Observers:

Plant Personnel: Dan Schwoerer, Bullseye Glass Company

Consultants: John Browning, Bridgewater Group

Agency Personnel: Michael Eisele, P.E., ODEQ, Mark Ludwiczak,

ODEQ; Zach Hedgepeth, US EPA

Test Plan Sent to: Michael Eisele, P.E. & George Davis, ODEQ

4. SUMMARY OF RESULTS

4.1 Tables of Results:

Table 1
Baghouse BH-1 Inlet PM Emissions Results

5 · · ·	Units	Runs 1	Run 2	Run 3	Averages
Test Dates:		17:30 (4/26)	17:30 (4/27)	17:00 (4/28)	_
		09:30 (4/27)	09:30 (4/28)	09:00 (4/29)	
Sampling Time	minutes	820	895	880	865
Sampling Results					
Filterable PM					
Filterable PM Concentration	gr/dscf	0.077	0.083	0.095	0.085
Rate	lb/hr	0.30	0.28	0.31	0.30
	lb/ton	8.58	8.12	8.84	8.51
Sample Weight, Filterable	mg	1,192	1,289	1,369	1,283
Condensable PM			e e		
Condensable PM Concentration	gr/dscf	0.00046	0.00037	0.00058	0.00047
Rate	lb/hr	0.002	0.001	0.002	0.002
	lb/ton	0.051	0.036	0.054	0.047
Sample Weight, Condensable	mg	7.1	5.7	8.3	7.0
Total PM					
Total PM Concentration	gr/dscf	0.077	0.083	0.096	0.085
Rate	lb/hr	0.30	0.28	0.31	0.30
	lb/ton	8.63	8.16	8.89	8.56
Sample Weight, Total	m g	1,199	1,295	1,377	1,290
Sample Volume	dscf	240.6	239.8	222.6	234.3
Flow Rate					
Flow Rate (Actual)	acf/min	538	481	475	498
Flow Rate (Standard)	dscf/min	455	397	378	410
Temperature	°F ·	148	161	179	163
Moisture	%	2.6	3.4	4.3	3.4
Percent Isokinetic	%	97	102	101	100

Table 2
Baghouse BH-1 Outlet PM Emissions Results

3	Units	Runs 1	Run 2	Run 3	Averages
Test Dates:		17:30 (4/26)	17:30 (4/27)	17:00 (4/28)	
		09:30 (4/27)	09:30 (4/28)	09:00 (4/29)	
Sampling Time	minutes	938	950	930	939
Sampling Results					
Filterable PM					
Filterable PM Concentration	gr/dscf	0.00004	0.00001	0.00012	0.00006
Rate	lb/hr	0.00024	0.00005	0.00061	0.00030
	lb/ton	0.0070	0.0013	0.0176	0.0086
Sample Weight, Filterable	mg	1.5	0.30	3.9	1.9
Condensable PM				÷	
Condensable PM Concentration	gr/dscf	0.00034	0.00025	0.00015	0.00025
Rate	lb/hr	0.0019	0.0012	0.0007	0.0013
	lb/ton	0.0543	0.0349	0.0208	0.0366
Sample Weight, Condensable	mg	11.7	8.0	4.6	8.1
Total PM					
Total PM Concentration	gr/dscf	0.00038	0.00026	0.00027	0.00031
Rate	lb/hr	0.0021	0.0013	0.0013	0.0016
	lb/ton	0.0612	0.0362	0.0384	0.0453
Sample Weight, Total	mg	13.2	8.3	8.5	10.0
Sample Volume	dscf	534.4	488.2	481.8	501.5
Flow Rate				•	
Flow Rate (Actual)	acf/min	764	653	674	697
Flow Rate (Standard)	dscf/min	651	559	572	594
Temperature	°F	143	142	147	144
Moisture	%	2.6	3.1	3.1	2.9
Percent Isokinetic	%	96	101	100	99

Table 3
Removal Efficiency

Removal Efficiency	Unit	Run 1	Run 2	Run 3	Average
Filterable PM	%	99.92	99.98	99.80	99.90
Condensable PM	%	-4.72 ¹	-0.93	62.00	18.78
Total PM	%	99.29	99.56	99.57	99.47

Table 4

Process/Production Data

Process/Production Data	Unit	Run 1	Run 2	Run 3	Average
Natural Gas Usage	ft³/hr	322	322	327	324
Furnace Temperature	°F	2415	2410	2443	2423
Baghouse Pressure Drop	inches, H₂O	5.5	5.3	5.7	5.5
Duration of Charging Period	minutes	5	5	5	5
Duration or Refining Period	hours	8	8	8	8

¹ lb/hr Condensable PM is higher at the outlet than on the inlet for Run 1, making removal efficiency calculation irrelevant. Higher exhaust flows in dscf/min compared to the inlet flow is the reason for this reading.

4.2 Description of Collected Samples:

<u>Inlet:</u> <u>Outlet:</u>

PM Filters: Green PM Filters: White

Impinger Contents: Clear Impinger Contents: Clear

4.3 Discussion of Method Errors and Quality Assurance Procedures:

This table is taken from a paper entitled "Significance of Errors in Stack Sampling Measurements," by R.T. Shigehara, W.F. Todd and W.S. Smith. It summarizes the maximum error expressed in percent, which may be introduced into the test procedures by equipment or instrument limitations.

Measurement	% Max Error
Stack Temperature Ts	1.4
Meter Temperature Tm	1.0
Stack Gauge Pressure Ps	0.42
Meter Gauge Pressure Pm	0.42
Atmospheric Pressure Patm	0.21
Dry Molecular Weight Md	0.42
Moisture Content Bws (Absolute)	1.1
Differential Pressure Head ΔP	10.0
Orifice Pressure Differential ΔH	5.0
Pitot Tube Coefficient Cp	2.4
Orifice Meter Coefficient Km	1.5
Diameter of Probe Nozzle Dn	0.80

4.3.1 <u>Manual Methods</u>: QA procedures outlined in the test methods were followed, including equipment specifications and operation, calibrations, sample recovery and handling, calculations and performance tolerances.

On-site quality control procedures include pre- and post-test leak checks on the sampling system and pitot lines. If pre-test checks indicate problems, the system is fixed and rechecked before starting testing. If post-test leak checks are not acceptable, the test run is voided and the run

is repeated. The results of the leak checks for the test runs are on the Field Data sheets.

Thermocouples used to measure the exhaust temperature are calibrated in the field using EPA Alternate Method 11. A single-point calibration on each thermocouple system using a reference thermometer is performed. Thermocouples must agree within ±2°F with the reference thermometer. Also, prior to use, thermocouple systems are checked for ambient temperature before heaters are started or readings are taken. Nozzles are inspected for nicks or dents and pitots are examined before and after each use to confirm that they are still aligned. The results were within allowable tolerances. Pre- and post-test calibrations on the meter boxes are included with the report along with semi-annual calibrations of critical orifices, pitots, nozzles, and thermocouples (sample box impinger outlet and oven, meter box inlet and outlet, and thermocouple indicators), as specified by ODEQ.

4.3.2 <u>Audit Requirement:</u> The EPA Stationary Source Audit Sample Program was restructured and promulgated on September 30, 2010 and was made effective 30 days after that date. The Standard requires that the Facility or their representative must order audit samples if they are available, with the exception of the methods listed in 40 CFR 60, 60.8(g)(1). The TNI website is referred to for a list of available accredited audit Providers and audits (www.nelac-institute.org/ssas/). If samples are not available from at least two accredited Providers they are not required. Currently, accredited Providers offer audit samples for EPA Methods 6, 7,

8, 12, 13A, 13B, 26, 26A, 29 and 101A. Based on the above, Bullseye Glass is not required to obtain audit samples for this test program.

5. SOURCE DESCRIPTION AND OPERATION

5.1 Process and Control Device Description and Operation:

Single natural gas fired colored art glass manufacturing tank furnace with an approximate operating capacity of 1,550 pound per batch; installed pre-2007.

Unspecified manufacturer baghouse filtration unit consisting of 14 filter bags and a design inlet gas flow rate of 1,000 acfm.

5.2 Test Ports:

5.2.1 Test Duct Characteristics:

Source: Baghouse, BH-1, Inlet Source: Baghouse, BH-1, Outlet

Construction: Steel Construction: Steel Shape: Circular Shape: Circular

Size: 12 inches inside diameter Size: 12.5 (E), 12.25 (W) inches inside

Orientation: Horizontal diameter

Flow straighteners: None Orientation: Vertical

Extension: None Flow straighteners: None

Cyclonic Flow: None expected Extension: None

Meets EPA Method 1 Criteria: Yes Cyclonic Flow: None expected

Meets EPA Method 1 Criteria: Yes

Note: Outlet is warped, making it difficult to measure exact diameter

5.3 Operating Parameters: See Production/Process Data section of Appendix.

5.4 Process Startups/Shutdowns or Other Operational Changes

During Tests: Process was continuous during testing.

6. SAMPLING AND ANALYTICAL PROCEDURES

6.1 Sampling Procedures:

6.1.1 Sampling and Analytical Methods: Testing was in accordance with procedures and methods listed in the Source Test Plan dated March 24 & April 25, 2016 (see Correspondence Section in the Appendix), including the following: EPA methods in Title 40 Code of Federal Regulations Part 60 (40 CFR 60), Appendix A, from the Electronic Code of Federal Regulations (www.ecfr.gov), January, 2014; Oregon Department of Environmental Quality (ODEQ) methods in Source Sampling Manual Volume 1, April, 2015.

Baghouse, BH-1 - Inlet & Outlet

Flow Rate:

EPA Methods 1 and 2 (S-type pitot w/ isokinetic

traverses)

Fixed Gases:

EPA Method 3C (gas chromatograph with a thermal

conductivity detector)

Moisture:

EPA Method 4 (incorporated w/ ODEQ Method 5)

PM:

ODEQ Method 5 (filterable and condensable PM;

isokinetic impinger train technique)

6.1.2 <u>Sampling Notes</u>: During sample recovery it was discovered that the filter for Run 3 at the baghouse outlet had torn. This most likely happened during the post-test leak check. ODEQ Method 5 is a Total Particulate method so this should not affect the Total PM results. Results for Run 3 are comparable to Run 1 and Run 2 so it is included in the run average.

The recommended 72 hour holding time for Tedlar bags was exceeded for the EPA Method 3C samples. Due to the low permeability of the material and stability of the compounds analyzed, we do not believe this affected the results for the molecular weight determination. The CO₂ results for the samples are consistent with the theoretical values based on the measured moisture content of the exhaust for the combustion of natural gas with O₂.

6.1.3 Laboratory Analysis:

Analyte

Laboratory

FPM & CPM

Antech, Corbett, OR

Fixed Gases

ALS, Simi Valley, CA

6.2 Sampling Train Diagram:

Figure 1
ODEQ Method 5 Particulate Matter Sample Train Diagram

Figure 5-1. Particulate Sampling Train

Note: An unheated jumper was used from the outlet of the filter over to the first impinger.

6.3 MAQS Test Equipment:

6.3.1 Manual Methods:

Equipment Name	Identification
Isokinetic Meter Boxes	CAE Express, Horizon No. 3 & No. 25
Probe Liners	Borosilicate Glass
Pitots and Thermocouples	2-4, 3-5, 3-6, I-30, I-40,I-41 GN-2, OS-51
	(oven), JF, MV, PT, JH, BS, JM, JL, BC,
	CH, PLB, SH
Shortridge Micromanometer	SR #1 and SR #5
Magnehelic Gauge	97
Stainless Steel Nozzles	S-635, S-512
Barometer	Calibrated Barometer

7. DISCUSSION

The results of the testing should be valid in all respects. All quality assurance checks including leak checks, instrument checks, and calibrations, were within method-allowable tolerances. By following the EPA methods referenced for this testing, we expect a 3-run average to sufficiently describe the data as precise, accurate, representative and complete.

APPENDIX

Abbreviations & Acronyms

Abbreviations and Acronyms Used in the Report

AAC Atmospheric Analysis & Consulting, Inc.
ACDP Air Contaminant Discharge Permit

ADEC Alaska Department of Environmental Conservation

ADL Above Detection Limit

BAAQMD Bay Area Air Quality Management District
BACT Best Achievable Control Technology

BCAA Benton Clean Air Agency
BDL Below Detection Limit
BHP Boiler Horsepower

BIF Boiler and Industrial Furnace

BLS Black Liquor Solids

 $\begin{array}{cc} C & Carbon \\ C_3H_8 & Propane \end{array}$

CAS Columbia Analytical Laboratory
CEM Continuous Emissions Monitor

CEMS Continuous Emissions Monitoring System
CERMS Continuous Emissions Rate Monitoring System

CET Calibration Error Test
CFR Code of Federal Regulations

 $\begin{array}{lll} \text{CGA} & & \text{Cylinder Gas Audit} \\ \text{CH}_2\text{O} & & \text{Formaldehyde} \\ \text{CH}_4 & & \text{Methane} \\ \text{Cl}_2 & & \text{Chlorine} \end{array}$

CIO₂ Chlorine Dioxide

CNCG Concentrated Non-Condensable Gas

CO Catalytic Oxidizer

CO₂ Carbon Dioxide

COC Chain of Custody

CTM Conditional Test Method

CTO Catalytic Thermal Oxidizer

DE Destruction Efficiency

Dioxins Polychlorinated Dibenzo-p-dioxins (PCDD's)

DLL Detection Level Limited
DNCG Dilute Non-Condensable Gas
dscf Dry Standard Cubic Feet
EIT Engineer in Training

EPA Environmental Protection Agency

ESP Electrostatic Precipitator
EU Emission Unit
FID Flame Ionization Detector

Furans Polychlorinated Dibenzofurans (PCDF's)

GC Gas Chromatography

gr/dscf Grains Per Dry Standard Cubic Feet

 H₂S
 Hydrogen Sulfide

 HAP
 Hazardous Air Pollutant

 HCI
 Hydrogen Chloride

 HHV
 Higher Heating Value

HRSG Heat Recovery Steam Generator

IDEQ Idaho Department of Environmental Quality

Ib/hrPounds Per HourLHVLower Heating Value

LRAPA Lane Regional Air Protection Agency
MACT Maximum Achievable Control Technology
MDi Methylene Diphyenyl Diisocyanate

MDL Method Detection Limit
MEK Methyl Ethyl Ketone

MeOH Methanol

MMBtu Million British Thermal Units
MRL Method Reporting Limit
MS Mass Spectrometry
MSF Thousand Square Feet

NCAS! National Council for Air and Steam Improvement

Abbreviations and Acronyms Used in the Report

NCG Non-condensable Gases

NCUAQMD North Coast Unified Air Quality Management District

NDIR Non-dispersive Infrared

NESHAP National Emissions Standards for Hazardous Air Pollutants
NIOSH National Institute for Occupational Safety and Health
NIST National Institute of Standards and Technology

NMC Non-Methane Cutter

NMOC Non-Methane Organic Compounds
NMVOC Non-Methane Volatile Organic Compounds

NWCAA Northwest Clean Air Agency

NO_x Nitrogen Oxides

NPD Nitrogen Phosphorus Detector

O₂ Oxygen

ODEQ Oregon Department of Environmental Quality

ORCAA Olympic Region Clean Air Agency
PAHs Polycyclic Aromatic Hydrocarbons
PCWP Plywood and Composite Wood Products

PE Professional Engineer
PM Particulate Matter

ppbv Parts Per Billion by Volume Parts Per Million by Volume ppmv PS Performance Specification **PSCAA** Puget Sound Clean Air Agency PSEL Plant Site Emission Limits pounds per square inch psi PTE Permanent Total Enclosure **PST** Performance Specification Test PTM Performance Test Method

QA/QC Quality Assurance and Quality Control
QSTI Qualified Source Testing Individual

RA Relative Accuracy
RAA Relative Accuracy Audit

RACT Reasonably Available Control Technology

RATA Relative Accuracy Test Audit

RCTO Rotary Concentrator Thermal Oxidizer

RM Reference Method

RTO Regenerative Thermal Oxidizer
SCD Sulfur Chemiluminescent Detector
SCR Selective Catalytic Reduction System

SO₂ Sulfur Dioxide SOG Stripper Off-Gas

SRCAA Spokane Regional Clean Air Agency SWCAA Southwest Clean Air Agency

SWCAA Southwest Clean Air

TAP Toxic Air Pollutant

TCA Thermal Conductivity Analyzer TCD Thermal Conductivity Detector

TGNENMOC Total Gaseous Non-Ethane Non-Methane Organic Compounds

TGNMOC Total Gaseous Non-Methane Organic Compounds

TGOC Total Gaseous Organic Compounds

THC Total Hydrocarbon

TIC Tentatively Identified Compound

TO Thermal Oxidizer

TO Toxic Organic (as in EPA Method TO-15)

TON ton=2000 pounds
TPH Tons Per Hour
TRS Total Reduced Sulfur
TTE Temporary Total Enclosure

VE Visible Emissions

VOC Volatile Organic Compounds

WC Inches Water Column

WDOE Washington Department of Ecology

Nomenclature & Drift Correction Documentation

。	
。	
。	
。	
。	
。	
。	
。	
。	

NOMENCLATURE

Part	Constants	Value	Units	Definition	Ref
Part				Standard Pressure	CRC
Table					CRC
164-23 164 174 1				Standard Temperature	CRC
Montage				Ideal Gas Constant	CRC
MMC-CO				Atmospheric (20.946 %O ₂ , 0.033% CO ₂ , Balance N ₂ +Ar)	
MM-CO					CRC
MMM-HQ					CRC
Month-Qo				•	CRC
Michael Mich					
MW-SQ-)	MW-H ₂ O	18.01534	Ibm / Ibmole		
Mode	MW-NO ₂	46.0055	lbm / ibmole	Nitrogen Dioxide	
MW-Ng-V/M 26.1546829 hm / Irbinote (Balance with 18.82% Ng. \$1.19% A)	MW-O ₂	31.9988	Ibm / Ibmole	Oxygen	CRC
MVM_Ay	-	64 0628	lhm / lbmole	Sulfur Dioxide	CRC
Section Sect	-				
Second S	-				
Symbol Units					
Symbol					Dof 2 5 4
Ann. Ann. Ann. Stock Ann. Ann. Stock Ann. Ann. Stock Ann. Ann.					
Am				Calculating Equation or Source of Data	EPA
Symbol S	As				
Company	An				E 5 2
C1	Bws			[100 Vw(std) / [Vw(std)+Vm(std)]]	Eq. 5-3
Carlo Infegration Carlo Infegration Capa Infegration Capa Infegration Capa Infegration Capa Infegration Capa Infegration Capa Capa Infegration Capa Capa	С				
Section Sec	C1	ft ³ /lbmol	Gas Constant @ Standard Conditions		
CQ gr/ssed Grain Loading, Actual [15.432 mi/ Vm/stol) 1,000] Eq. 5-6 CQ XXXOQ, gr/ssed Grain Loading Corrected to X% Cathon Dioxide XXX/COQ-%] [20.846-X)/(20.944-O ₂)] Eq. 5-6 Cgas Q/XXOQ, pmw Gas Concentration Correction to XX Coxygen [20.846-X)/(20.944-O ₂)] Feb. 20.84 Cgas Q/XXOQ, pmv Gas Concentration Correction to XX Coxygen [20.846-X)/(20.946-O ₂ %)] Feb. 20.84 Cgas Q/XXOQ, pmv Cathon Monoxide [20.846-X)/(20.946-O ₂ %)] Feb. 20.84 Cio pmv Cathon Monoxide Feb. 20.84 Feb. 20.84 Feb. 20.84 Ci ff Inner Circumference of Circular Stack Feb. 20.84 Feb. 20.84 Feb. 20.84 Ci ff Inner Circumference of Circular Stack Feb. 20.84 Feb. 20.84 Feb. 20.84 Ci ft Inner Circumference of Circular Stack Feb. 20.84 Feb. 20.84 Feb. 20.84 Ci ft Inner Circumference of Circular Stack Feb. 20.84 Feb. 20.84 Feb. 20.84 Ci </td <td>C2</td> <td></td> <td></td> <td></td> <td></td>	C2				
QQ XXXOC) gridsef Grain Loading Corrected to XX Carbon Dioxide XX / CO-X* QQ XXOC) gridsef Grain Loading Corrected to XX Carbon Dioxide [20.846-XX) / (20.948-O ₂)] QBS Q XXOC) ppmv Gas Concentration Correction to XX Carbon Dioxide [X3, CO-X*] QBS Q XXOC) ppmv Gas Concentration Correction to XX Oxypen [20.946-X3) / (20.946-O ₂ %)] QBS Q XXOC) ppmv Carbon Momorise [20.946-X5) / (20.946-O ₂ %)] CO ppmv Carbon Momorise [20.946-X5) / (20.946-O ₂ %)] CO ppmv Outer Consulterance of Circular Stack CO ppmv Carbon Dioxide [20.946-X5) / (20.946-O ₂ %)] CO ppmv Carbon Dioxide [20.946-X5) / (20.946-O ₂ %)] CO ppmv Dioxide [20.946-X5] / (20.946-O ₂ %)] CO ppmv Dioxide [20.946-Q-2] Graph Avarage square root	Cd	Ibm-GAS / MMdscf			F 50
QQ XX6CQ2 gridsecf Grain Loading Corrected to XX Gorbon Dioxide [X% (CO_3%)] [X8 (CO_3%)]	cg	gr/dscf	Grain Loading, Actual		Eq. 5-6
QQ XXLOQ, gr/studer Class Gr/am Loading Cornected to XX; Oxygen [20.946-X3] (20.946-Q ₂)] [20.946-X3] (20.946-Q ₂)] Cyase Q XXLOQ, pmv Gas Concentration Correction to XX; Oxygen [20.946-X3] (20.946-Q ₂)] [20.946-X3] (20.946-Q ₂)] Cyase Q XXLOQ, ppmv Gas Concentration Correction to XX; Oxygen [20.946-X3] (20.946-Q ₂)] [20.946-X3] (20.946-Q ₂)] Cyase Q XXLOQ, ppmv Carbon Monoride (20.946-Q ₂) [20.946-X3] (20.946-Q ₂)] Cyase Q XXLOQ, ppmv Carbon Dioxide (20.946-Q ₂) [20.946-X3] (20.946-Q ₂)] Cyase Q XXLOQ, pm Pmv Carbon Dioxide (20.946-Q ₂) [20.946-Q ₂] Cyase Pm Pmv Pilot table oxedificant (20.946-Q ₂) [20.946-Q ₂] Cyase Pm Pmv Pressure differential across orifice (20.946-Q ₂) [20.946-Q ₂] Driver State (20.946-Q ₂) Pressure differential across orifice (20.946-Q ₂) [20.946-Q ₂] Driver State (20.946-Q ₂) Pressure dischnetic (20.946-Q ₂) [20.946-Q ₂] E b J / MMBu Pollutatine Emission Rate Case Fd MWgas (20.946-Q ₂) [20.946-Q ₂] Md By / Mmbu Pollutatine Emission Rate Case Fd MWgas (20.946-Q ₂) [20.946-Q ₂] Md By / Mmbu Prescrit Schonielic (20.946-Q ₂)	cg @ X%CO₂	gr/dscf	Grain Loading Corrected to X% Carbon Dioxide	[X%/CO ₂ %]	
Cigas		•	-	[(20.946-X)/(20.946-O ₂)]	
Case @ X%CO2 pmw		•		er en	
Cagas @ XWO_ pmv				LX% / CO.% 1	
Capital	-			•	
Co	Cgas @ X%O₂	. ,	Gas Concentration Correction to X% Oxygen	• • • • • • • • • • • • • • • • • • • •	
Co ft Outer Circumference of Circular Stack Cl ft Inner Circumference of Circular Stack CCp % Carbon Dioxide CF Pifot the oeefficient CI Ibhr Particulate Mass Emissions [60 cg Qsd / 7,000] dH in H₂O Pressure differential across orifice DD in Diameter, Nozzie Average square root of velocity pressure Ds in Diameter, Nozzie Average square root of velocity pressure Ds in Diameter, Rozzie Cgas Fd MWgas (20.946 / (20.946-0₂) / (1,000,000 c1) Table 19. EE b / MMBtu F Pactor For Various Fuels [1 Table 19. Table 19. Ind % Mole fraction of dy stack gas [1-80-x100] (Ver Sp. x/K-Co₂)/(KWcO₂) + (KCO₂ x/K-CO₂) + (KCO₂ x/K-CO₂) + (KCO₂ x/K-CO₂) + (KCO₂ x/K-CO₂), x/K-CO₂ x/K-CO₂), x/K-CO₂ x/K-CO₂, x	Cgas	ppmv		Mgas (lbm/hr) * 1,000,000-385.3211/50-Qsd-mw	
Ci cl ft Inner Circumference of Circular Stack CC c c cl % Carbon Dioxide Flot tube coefficient Flot tube coefficient CT c l Ib/hr Particulate Mass Emissions [60 cg Qsd/7,000] Flot William Stack Flot Graph Stack Dn in HgO Pressure differential across orifice Flot Graph Stack Cgas Fd MWgas (20.946 / (20.946-0₂)) / (1,000,000 C1) Table 19 E b /MMBtu Pollutar Emission Rate Cgas Fd MWgas (20.946 / (20.946-0₂)) / (1,000,000 C1) Table 19 Fd dscsf / MMBtu F Factor for Various Fuels [C 2 Ts(abs) Vm(std) / (vs Ps mfg An Ø)] Eg. 9.8° Md bm/b / Ibmole Molecular weight, Dry Stack Gas [1 +8ws/100] [1 +8ws/100] Eg. 9.8° Mgas lbm/br Gaseous Mass Emisisons [80 Cgas(ppmv) MW Pstd(2) Qsd / 1,000,000 R Tstd] Eg. 9.8° Ms lbm/br / bmole Molecular weight, Wet Stack [Md mfg +MW-HgO] (1-mfg)] Eq. 2-6° MW lbm / bmole Molecular weight, Wet Stack [Md mfg +MW-HgO] (1-mfg)] Eq. 2-6° MW lbm / bmole Molecular Weight, Wet Stack [Md	co				
CCp % Catbon Dloxide CP Filtotuse coefficient CI Ib/hr Particulate Mass Emissions [60 cg Qsd/7,000] OH In HyO Pressure differential across orifice Dn In Diameter, Nozzle Factorial across orifice Ds in Diameter, Stack Cgas Fd MWgas (20,946 / (20,946 O₂) / (1,000,000 C1) Factorial across orifice E In Mole Mill Factor for Various Fuels [C2 Ts(abs) Vm(stal) / (vs Ps mfg An Ø)] Eq. 5-8* MI Im Mole fraction of dry stack gas [1-80 x (00)] [C2 Ts(abs) Vm(stal) / (vs Ps mfg An Ø)] Eq. 5-8* Midga Ibm/r bmole Mole fraction of dry stack gas [1-80 x (00)] [C2 Ts(abs) Vm(stal) / (vs Ps mfg An Ø)] Eq. 2-5 Migas Ibm/r bmole Mole fraction of dry stack gas [1-80 x (00)] [Mole fraction of dry stack gas [1-80 x (00)] [Mole fraction of dry stack gas [1-80 x (00)] [Mole fraction of dry stack gas [1-80 x (00)] [Mole fraction of dry stack gas [1-80 x (00)] [Mole fraction of dry stack gas [1-80 x (00)] [Mole fraction of dry stack gas [Mole fra	Co				
Pilot tube coefficient					
Cf lbfhr Particulate Mass Emissions [60 cg Qsd/7,000] dH in H₂O Pressure differential across orifice Dn in Diameter, Nozzle Average square root of velocity pressure Ds in Diameter, Nozzle Cgas Fd MWgas (20.946 / (20.946 - O₂) / (1,000,000 C1) Ferential point of the pressure of the point of t	CO ₂	%	Carbon Dioxide		
dH In H2O Pressure differential across orifice Dn In Diameter, Nozzle dp% Average aquare rot of velocity pressure Ds In Diameter, Stack E Ib / MMBtu Pollutant Emission Rate Cgas Fd MWgas (20.946 (20.946 -02.)) / (1,000,000 C1.) FE Ib / MMBtu F Factor for Various Fuels [C2 Ta(abs) Vm(std) / (vs Ps mfg An Ø)] Table 19. FG d scd / MMBtu F Factor for Various Fuels [C2 Ta(abs) Vm(std) / (vs Ps mfg An Ø)] Eq. 5-8* Md Ibm / Ibmole Mole fraction of dry stack Gas [1-8-wa100] [Vs Q-WCO_)(MWr2+ar)+(%O2 MW-O2)-(%CO2 MW-CO2)] Eq. 3-1* Mfgae Ibm / Ibmole Mole fraction of dry stack gas [1-8-wa100] [40 Cgas(ppmv) MW Patd(2) Qad / 1,000,000 R Tstd] Eq. 2-5 MW Ibm / Ibmole Molecular Weight, Wet Stack [Md mfg +MW-H2O (1-mfg)] Eq. 2-5 MW Ibm / Ibmole Molecular Weight, Wet Stack [Md mfg +MW-H2O (1-mfg)] Eq. 2-5 MW Ibm / Ibmole Molecular Weight Molecular Weight Molecular Weight Molecular Weight Molecular Weight	Ср		Pitot tube coefficient		
Dameler, Nozzle	Ct	lb/hr	Particulate Mass Emissions	[60 cg Qsd/ 7,000]	
Dameler Nozzle Da	dH	in H₂O	Pressure differential across orifice		
dg/%	Dn	in .	Diameter, Nozzle		
Dameter, Stack					
F	' [*]	in			
Factor for Various Fuels Table 14				Cgas Fd MWgas (20.946 / (20.946-O ₂)) / (1,000,000 C1)	
Mode	1				Table 19-1
Md Ibm / Ibmole Molecular weight, Dry Stack Gas [(1-%O_2-%CO_2)(MWn2+ar)+(%O_2 MW-O_2)+(%CO_2 MW-CO_2)] Eq. 3-1* mfg mfg Mole fraction of dry stack gas [1-Bws/100]	1 u			C2 Ts(abs) Vm(std) / (vs Ps mfg An Ø)]	Eq. 5-8*
mfg Mole fraction of dry stack gas [1-Bws/100] Mgas Ibm/hr Gaseous Mass Emisisons [60 Cgas(ppmv) MW Pstd(2) Qsd / 1,000,000 R Tstd] mn mg Particulate lab sample weight Ms Ibm / Ibmole Molecular weight, Wet Stack [Md mfg +MW-H ₂ O (1-mfg)] Eq. 2-5 MW Ibm / Ibmole Molecular Weight Molecular Weight Molecular Weight Molecular Weight NO2 ppmv-NO2 Nitrogen Dioxide (General Reporting Basis for NOx) NOX Pompre Very Molecular Weight Feq. 2-5 NO2 ppmv-NO2 Nitrogen Dioxide (General Reported as NO2) Poparty Pop	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Ea. 3-1*
Mighas Ibm/ftr Gaseous Mass Emisisons [60 Cgas(ppmv) MW Pstd(2) Qsd / 1,000,000 R Tstd] mn mg Particulate lab sample weight mn mg Particulate lab sample weight mn mg Molecular weight Mes tack [Md mfg +MW-H ₂ O (1-mfg)] Eq. 2-5		IDITI / IDITIOIS			
Min					
MS Ibm / Ibmole Molecular weight, Wet Stack [Md mfg +MW-H₂O (1-mfg)] Eq. 2-5 MW Ibm / Ibmole Molecular Weight Eq. 2-5 MVO ppmv-NO₂ Nitrogen Dioxide (General Reporting Basis for NOx) NOX NOX ppmv-NO₂ Nitrogen Dioxide (General Reporting Basis for NOx) NOX Possion (General Reporting Basis for NOx) NOX ppmv-NO₂ Nitrogen Dioxide (General Reporting Basis for NOx) NOX Possion (General Reporting Basis for NOx) NOX ppmv-NO₂ Nitrogen Dioxide (Reported as NO₂) Possion (Reported as NO₂) NOX Possion (Reported as NO₂) Possion (Reported as				[60 Cgas(ppinv) www Psid(z) Qsd7 1,000,000 K 1sid]	
MW Ibm / Ibmole Molecular Weight NO2 ppmv-NO2 Nitrogen Dioxide (General Reporting Basis for NOx) NOX ppmv-NO2 Nitrogen Dioxide (Reported as NO2) O2 % Oxygen OPC % Opacity Pbar In Hg Pressure, Barometric Pg in Hg Pressure, Absolute across Orifice [Pbar + dH / 13.5951] Eq. 2-6* Qa acfmin Volumetric Flowrate, Actual [As vs / 144] Eq. 2-6* Qa dscfmin Volumetric Flowrate, Actual [As vs / 144] [Pbar + Pg / 13.5951] Eq. 2-6* Qa acfmin Volumetric Flowrate, Actual [As vs / 144] [Pbar + Pg / 13.5951] Eq. 2-6* Qa dscfmin Volumetric Flowrate, Dry Standard [Qa Tetd mfg Ps] / [Pstd(1) Ts(abs)] Eq. 2-6* Qa dscfmin Volumetric Flowrate, Dry Standard [Qa Tetd mfg Ps] / [Pstd(1) Ts(abs)] Eq. 2-10* Rf MMBtu/br MMBtu/br Image: Market actual mfg Ps] / [Pstd(1) Ts(abs)] Eq. 2-10* TGOC ppmv-SO2 Sulfur Di	l	•		[14 d - 6- 18/00 11 O /4 m6a	E ~ 2 E
NO2 ppmv-NO2 Nitrogen Dioxide (General Reporting Basis for NOx) NOX ppmv-NO2 Nitrogen Oxides (Reported as NO2) O2 % Oxygen OPC % Opacity Pbar in Hg Pressure, Barometric Pg in Hg Pressure, Static Stack Po in Hg Pressure, Absolute across Orifice [Pbar + Pg / 13.5951] Eq. 2-6* Qa acfmin Volumetric Flowrate, Actual [As vs / 144] [Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)] Eq. 2-10* Rf MMBtut/in Volumetric Flowrate, Dry Standard [Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)] Eq. 2-10* SO2 ppmv-SO2 Sulfur Dioxide [Tm + 459.67] Eq. 2-10* t in Wall thickness of a stack or duct [Tm + 459.67] [Tm + 459.67] TGOC ppmv-C Total Gaseous Organic Concentration (Reported as C) [Tm + 459.67] [Tm + 459.67] Ts *F Temperature, Absolute Dry Meter [Tm + 459.67] [Tm + 459.67] Vic ml Volume, Organized Stack gas [Ts + 4	Ms	Ibm / Ibmole	• • • • • • • • • • • • • • • • • • • •	[Ma mig +MYY-n ₂ O (1-mig)]	Eq. 2-0
NOX ppmv-NO2 Nitrogen Oxides (Reported as NO2) O2 % Oxygen OPC % Opacity Pbar in Hg Pressure, Barometric Pg in Hg Pressure, Static Stack Po in Hg Pressure, Absolute across Orifice [Pbar + dH / 13.5951] Eq. 2-6* Qa acf/min Volumetric Flowrate, Actual [Pbar + Pg / 13.5951] Eq. 2-6* Qa acf/min Volumetric Flowrate, Actual [As vs / 144] [Ps / 13.5951] Eq. 2-10* Rf MMBtu/hr Incompany (Ps / 10.000) Ps / 1.000,000 Mgas (20.948-O2)]/[Cd Fd 20.946] Eq. 2-10* SO2 ppmv-SO2 Sulfur Dioxide Ps / 1.000,000 Mgas (20.948-O2)]/[Cd Fd 20.946] Eq. 2-10* TGOC ppmv-C Total Gaseous Organic Concentration (Reported as C) Total Caseous Organic Concentration (Reported as C) <th< td=""><td>MW</td><td>ībm / Ibmole</td><td>Molecular Weight</td><td></td><td></td></th<>	MW	ībm / Ibmole	Molecular Weight		
O2 % Oxygen OPC % Opacity Pbar In Hg Pressure, Barometric Pg in Hg Pressure, Static Stack Po in Hg Pressure, Absolute across Orifice [Pbar + dH / 13.5951] Ps in Hg Pressure, Absolute Stack [Pbar + Pg / 13.5951] Eq. 2-6* Qa act/min Volumetric Flowrate, Actual [As vs / 144] [A	NO ₂	ppmy-NO ₂	Nitrogen Dioxide (General Reporting Basis for NOx)		
O2 % Oxygen OPC % Opacity Pbar In Hg Pressure, Barometric Pg in Hg Pressure, Static Stack Po in Hg Pressure, Absolute across Orifice [Pbar + dH / 13.5951] Ps in Hg Pressure, Absolute Stack [Pbar + Pg / 13.5951] Eq. 2-6* Qa act/min Volumetric Flowrate, Actual [As vs / 144] [A	NOx	ppmv-NO ₂	Nitrogen Oxides (Reported as NO ₂)		
OPC % Opacity Pbar in Hg Pressure, Barometric Pg in Hg Pressure, Static Stack Po in Hg Pressure, Absolute across Orifice [Pbar + dH / 13.5951] Eq. 2-6* Qs in Hg Pressure, Absolute Stack [Pbar + Pg / 13.5951] Eq. 2-6* Qa act/min Volumetric Flowrate, Actual [As vs / 144] [As vs	l		• • • • • • • • • • • • • • • • • • • •		
Pbar in Hg Pressure, Barometric Pg in Hg/Q Pressure, Static Stack Po in Hg Pressure, Absolute across Orifice [Pbar + dH / 13.5951] Eq. 2-6* Ps in Hg Pressure, Absolute Stack [Pbar + Pg / 13.5951] Eq. 2-6* Qa acl/min Volumetric Flowrate, Actual [As vs / 144]				•	
Pg in H ₂ O Pressure, Static Stack Po in Hg Pressure, Absolute across Orifice [Pbar + dH / 13.5951] Ps in Hg Pressure, Absolute across Orifice [Pbar + Pg / 13.5951] Eq. 2-6* Qa actfmin Volumetric Flowrate, Actual [As vs / 144] [Pstd(1) Ts(abs)] Eq. 2-10* Rf MMBtt//hr Volumetric Flowrate, Dry Standard [Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)] Eq. 2-10* Rf MMBtt//hr In Output (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2			- • •		
Po in Hg Pressure, Absolute across Orifice [Pbar + dH / 13.5951] Eq. 2-6* Ps in Hg Pressure, Absolute Stack [Pbar + Pg / 13.5951] Eq. 2-6* Qa act/min Volumetric Flowrate, Actual [As vs / 144] [Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)] Eq 2-10* Rf MMBtu/hr 1,000,000 Mgas (20.946-O2)] / [Cd Fd 20.946] Eq 2-10* SO2 ppmv-SO2 Sulfur Dioxide Fremperature, Absolute Dry Meter Temperature, Dry gas meter Tm "F Temperature, Dry gas meter [Tm + 459.67] Temperature, Etack gas Ts(abs) "R Temperature, Absolute Dry Meter [Ts + 459.67] Temperature, Absolute Stack gas [Ts + 459.67] Ts(abs) "R Temperature, Absolute Stack gas [Ts + 459.67] Temperature, Absolute Stack gas [Ts + 459.67] Vlc ml Volume, Gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. 5-1 Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. 5-5 Vw(std) scf Volume, Water Vapor 0.04707 Vlc<					
Ps in Hg Pressure, Absolute Stack [Pbar + Pg / 13.5951] Eq. 2-6* Qa act/min Volumetric Flowrate, Actual [As vs / 144] [Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)] Eq 2-10* Rf MMBtu/hr 1,000,000 Mgas (20.946-Q₂)] / [Cd Fd 20.946] Eq 2-10* SO2 ppmv-SO2 Sulfur Dioxide [Tm + 459.67] F t in Wall thickness of a stack or duct TGOC ppmv-C Total Gaseous Organic Concentration (Reported as C) Tm F Temperature, Dry gas meter [Tm + 459.67] F Tm F Temperature, Absolute Dry Meter [Tm + 459.67] F Ts(abs) PR Temperature, Absolute Stack gas [Ts + 459.67] F Ts(abs) PR Temperature, Absolute Stack gas [Ts + 459.67] F Ts(abs) PR Temperature, Absolute Stack gas [Ts + 459.67] F Ts(abs) PR Temperature, Absolute Stack gas [Ts + 459.67] F Ts(abs) Properature, Absolute Stack gas [Ts + 459.67] F Ts(abs) Properature, Absolute Stack gas [Ts + 459.67] F Ts(absolute				I Phor ± dH / 19 5051 1	
Qa ac/fmin Volumetric Flowrate, Actual [As vs / 144] Qsd dsc/fmin Volumetric Flowrate, Dry Standard [Qa Tstd mfg Ps]/ [Pstd(1) Ts(abs)] Eq 2-10* Rf MMBtu/hr 1,000,000 Mgas (20.946-O₂)]/ [Cd Fd 20.946] Eq 2-10* SO₂ ppmv-SO₂ Sulfur Dioxide Frequency t in Wall thickness of a stack or duct Frequency TGOC ppmv-C Total Gaseous Organic Concentration (Reported as C) Frequency Tm °F Temperature, Absolute Dry Meter [Tm + 459.67] Ts °F Temperature, Absolute Dry Meter [Tm + 459.67] Ts °F Temperature, Absolute Stack gas [Ts + 459.67] Vlc ml Volume of condensed water Vm dcf Volume, Gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. 5-1 vs fpm Velocity, Stack gas Kp Cp dp^½ [Ts(abs) / (Ps Ms)]^* ½ Eq. 5-2 Yw(std) scf Volume, Water Vapor 0.04707 Vlc Eq. 5-5 Y Dry gas meter calibration factor Fig. 5-6 <td></td> <td></td> <td></td> <td></td> <td>Fa 2-6*</td>					Fa 2-6*
Qsd dscf/min Volumetric Flowrate, Dry Standard [Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)] Eq 2-10* Rf MMBft//hr 1,000,000 Mgas (20.948-O2)] / [Cd Fd 20.946] 4 2-10* SO2 ppmv-SO2 Sulfur Dioxide 5 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 2 3 2 3 3 2 3 2 3 3 2 3 3 2 3 2 3 3 2 3 2 3 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 2 3					_q, ∠ -0
Solution Solution					Eq 2-10*
SO2			volumetric Flowrate, Dry Standard		E4 2-10
t in Wall thickness of a stack or duct TGOC ppmv-C Total Gaseous Organic Concentration (Reported as C) Tm "F Temperature, Dry gas meter Tm(abs) "R Temperature, Absolute Dry Meter [Tm + 459.67] Ts "F Temperature, Stack gas Ts(abs) "R Temperature, Absolute Stack gas [Ts + 459.67] Vlc ml Volume of condensed water Vm dcf Volume, Gas sample Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. 5-1 vs fpm Velocity, Stack gas Kp C pdp^½ [Ts(abs) / (Ps Ms)]^½ Eq. 2-9* Vw(std) scf Volume, Water Vapor 0.04707 Vlc Eq. 5-5.5				1,000,000 Mgas (20,840-0 ₂) [/[Cd Fd 20,840]	
t in Wall thickness of a stack or duct TGOC ppmv-C Total Gaseous Organic Concentration (Reported as C) Tm "F Temperature, Dry gas meter Tm(abs) "R Temperature, Absolute Dry Meter [Tm + 459.67] Ts "F Temperature, Stack gas Ts(abs) "R Temperature, Absolute Stack gas [Ts + 459.67] Vlc ml Volume of condensed water Vm dcf Volume, Gas sample Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. 5-1 vs fpm Velocity, Stack gas Kp C pdp^½ [Ts(abs) / (Ps Ms)]^½ Eq. 2-9* Vw(std) scf Volume, Water Vapor 0.04707 Vlc Eq. 5-5.5	SO₂	ppmv-SO ₂	Sulfur Dioxide		
TGOC ppmv-C Total Gaseous Organic Concentration (Reported as C) Tm °F Temperature, Dry gas meter Tm(abs) °R Temperature, Absolute Dry Meter [Tm + 459.67] Ts °F Temperature, Stack gas [Ts + 459.67] Vlc ml Volume of condensed water Vm dcf Volume, Gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. 5-1 vs fpm Velocity, Stack gas Kp Cp dp ⁴ ½ [Ts(abs) / (Ps Ms)] ⁴ ½ Eq. 2-9* Vw(std) scf Volume, Water Vapor 0.04707 Vlc Eq. 5-2 Y Dry gas meter calibration factor Fig. 5.6	t	in			
Tm °F Temperature, Dry gas meter Tm(abs) °R Temperature, Absolute Dry Meter [Tm + 459.67] Ts °F Temperature, Stack gas [Ts + 459.67] Vic ml Volume of condensed water Vm dcf Volume, Gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. 5-1 Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. 5-1 Vw fpm Velocity, Stack gas Kp Cp dp ^A / ₂ [Ts(abs) / (Ps Ms)] ^A ½ Eq. 2-9* Vw(std) scf Volume, Water Vapor 0.04707 Vlc Eq. 5-2 Y Dry gas meter calibration factor Fig. 5.6	твос				
Tm(abs) °R Temperature, Absolute Dry Meter [Tm + 459.67] Ts °F Temperature, Stack gas [Ts + 459.67] Vlc ml Volume of condensed water Vm dcf Volume, Gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. 5-1 vs fpm Velocity, Stack gas Kp Cp dp^½ [Ts(abs) / (Ps Ms)]^½ Eq. 2-9* Vw(std) scf Volume, Water Vapor 0.04707 Vlc Eq. 5-2 Y bry gas meter calibration factor Fig. 5.6					
Ts				[Tm + 459.67]	
Ts(abs) *R Temperature, Absolute Stack gas [Ts + 459.67] VIc ml Volume of condensed water Vm dcf Volume, Gas sample Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. 5-1 vs fpm Velocity, Stack gas Kp Cp dp ^A /2 [Ts(abs) / (Ps Ms)] ^A /2 Eq. 2-9* Vw(std) scf Volume, Water Vapor 0.04707 VIc Eq. 5-2 Y Dry gas meter calibration factor Fig. 5.6			Temperature, Stack gas		
VIc mI Volume of condensed water Vm dcf Volume, Gas sample Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. 5-1 vs fpm Velocity, Stack gas Kp Cp dp^½ [Ts(abs) / (Ps Ms)]^½ Eq. 2-9* Vw(std) sof Volume, Water Vapor 0.04707 VIc Eq. 5-2 Y Dry gas meter calibration factor Fig. 5.6				[Ts + 459.67]	
Vm dcf Volume, Gas sample Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. 5-1 vs fpm Velocity, Stack gas Kp Cp dp^½ [Ts(abs) / (Ps Ms)]^½ Eq. 2-9* Vw(std) scf Volume, Water Vapor 0.04707 Vlc Eq. 5-2 Y Dry gas meter calibration factor Fig. 5.6				•	
Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. 5-1 vs fpm Velocity, Stack gas Kp Cp dp½ [Ts(abs) / (Ps Ms)]½ Eq. 2-9* Vw(std) scf Volume, Water Vapor 0.04707 Vlc Eq. 5-2 Y Dry gas meter calibration factor Fig. 5.6					
vs fpm Velocity, Stack gas Kp Cp dp^½ [Ts(abs) / (Ps Ms)]^½ Eq. 2-9* Vw(std) scf Volume, Water Vapor 0.04707 Vlc Eq. 5-2 Y Dry gas meter calibration factor Fig. 5.6				[YVm Tstd Po]/[Pstd(1) Tm(abs)]	
Vw(std) sef Volume, Water Vapor 0.04707 VIc Eq. 5-2 Y Dry gas meter calibration factor Fig. 5.6				Kp Cp dp^½ [Ts(abs) / (Ps Ms)]^ ½	
PY Dry gas meter calibration factor Fig. 5.6					Eq. 5-2
		**			Fig. 5.6
		min			

13585 NE Whitaker Way → Portland, OR 97230 Phone (503) 255-5050 → Fax (503) 255-0505

DRIFT CORRECTION DOCUMENTATION

EPA Drift Equations:

- Method 3A: Oxygen and Carbon Dioxide, Follow Section 12.0 of Method 7E
- Method 6C: Sulfur Dioxide, Follow Section 12.0 of Method 7E
- Method 7E: Nitrogen Oxides, Section 12.0

$$C_{gas} = \frac{C_{ma}(C - C_o)}{(C_m - C_o)}$$
 (Eq. 7E-5b)

- Method 10: Carbon Monoxide, Follow Section 12.0 of Method 7E
- Method 25A: Total Gaseous Organic Concentration (TGOC), this method does not mention correcting for drift although there are established limits.

Horizon Engineering Drift Correction Equations:

$$C_{gas} = \frac{(C_{id} - Z_x)(C_{ma} - C_{oa})}{(S_x - Z_x)} \qquad S_x = \frac{(C_{mf} - C_{mi})(T_x - T_{ci})}{(T_{cf} - T_{ci})} + C_{mi}$$

$$Z_x = \frac{(C_{of} - C_{oi})(T_x - T_{ci})}{(T_{cf} - T_{ci})} + C_{oi} \quad T_x = \frac{(T_{te} - T_{ts})}{2} + T_{ts}$$

EPA	Definition	Horizon
C_{gas}	Effluent gas concentration, dry basis	C_{gas}
C_{ma}	Actual upscale calibration gas concentration	C_{ma}
C_{oa}	Actual zero/low calibration gas concentration	C_{oa}
$C_{\mathbf{m}}$	Average of initial and final system upscale calibration bias responses	
	Initial system upscale calibration bias response	C_{mi}
	Final system upscale calibration bias response	C_{mf}
C_{o}	Average of initial and final system zero/low calibration bias responses	
	Initial system zero/low calibration bias response	$\mathbf{C}_{\mathrm{e}i}$
	Final system zero/low calibration bias response	C_{of}
C	Average gas concentration indicated by gas analyzer, dry basis	C_{id}
	Starting test time	T_{ts}
	Ending test time	T_{te}
	Initial system bias calibration response time	T_{ei}
	Final system bias calibration response time	T_{ef}
-	Mid-point of test time or gas sampling interval to be analyzed	$T_{\mathbf{x}}$
	Approximate upscale response at mid-point test time	S_x
	Approximate zero/low response at mid-point test time	Z_{x}
	Carbon count of TGOC calibration gas. (CH ₄ =1, C ₃ H ₈ =3)	K
	Carbon response factor basis on a state basis (example Propane carbon basis)	R

Notes or exceptions:

TGOC is first recorded on a wet basis, then corrected to a dry basis

The TGOC instruments used by Horizon have some historic data on instrument response to different hydrocarbons.

PM & Flow Rate
Results & Example Calculations
Field Data
Sample Recovery Field Data & Worksheets
Blank Corrections
Laboratory Results, Worksheets, & COC
Traverse Point Locations
Cyclonic Flow Measurement

Particulate Emissions

Client Source Location BULLSEYE
GLASS FURNACE T7-INLET
PORTLAND OR

26-Apr-16 Date SH,JL,JF,BC,JM,CH,JH Operator

mew Analyist/QA

PORTLAND OR ODEQ5

Run 3 Average Run 1 Run 2 Units Symbol Definitions 4/28/16 4/26/16 4/27/16 Date, Starting 17:30 17:30 17:00 Time, Starting 9:30 9:30 9:00 Time, Ending 16.0 hrs 16.0 16.0 Interval 4/29/16 4/27/16 4/28/16 Date, Ending 15-8-756 15-8-714 15-8-713 Filter, Front 229.429 240.59 Vm dcf 248.154 244,186 Volume, Gas sample 87,31 84.09 ٥F 84,19 80,76 Temperature, Dry gas meter Τm 161.49 162.74 178.79 147.95 ٥F Temperature, Stack gas Ts Tdb ٥F na na na Temperature, Stack Dry Bulb °F na na na Temperature, Stack Wet Bulb Twb 0,285 0.236 0.230 0.25 in H2O Pressure differential across orifice dH 0.164 dp^1/₂ in H2O^1/2 0.1880.169 Average square root velocity pressure 0.309 0.309 0.309 in Diameter, Nozzle Dn0.8472 0.8363 0.8363 Pitot tube coefficient Cp0.99916 0.99916 0.99916 Dry gas meter calibration factor 29.90 30.10 30.10 in Hg Phar Pressure, Barometric -0,3 -0.3-0.3in H2O Pressure, Static Stack Pg 865 895 880 820 Ø Time, Total sample in² 113.1 113.1 113,1 As Stack Area 0.0750 0.0750 0.0750 in^2 An Nozzle Area 178.7 211.7 175.3 135.6 Volume of condensed water ml % O2 20.65 20,62 20,60 20.74 Oxygen 1.46 1.01 1.28 1.38 % CO2 Carbon Dioxide 29.15 29.11 Md lbm / Ibmole 29.17 29.18 Molecular weight, Dry Stack 30.08 30.01 29,88 30.08 Ps in Hg Pressure, Absolute Stack 29.92 30.12 30.12 30,05 Pressure, avg arcoss orifice Po in Hg 234.31 222.59 240.56 239.78 Volume, Dry standard gas sample Vm(std) dscf 997 8.25 6.38 8.41 Vw(std) scf Volume, Water Vapor 4.29 3,42 2.58 3.39 (EPA 4) Bws(1)9% Moisture, % Stack 35.60 24.07 33.24 49.48 Moisture, % Stack (Psychrometry-Sat) Bws(2)% % na na Bws(3) na (Theoretical) Moisture, % Stack na Moisture, % Stack (Psychrometry) Bws(4)% па na Bws(5) % na па Moisture, % Stack (Predicted) 95.7% 96.6% 96.6% mfg 97.4% Mole Fraction dry Gas 28.77 28.80 28.64 1bm / 1bmole 28.88 Molecular weight, Wet Stack Ms 634.1 685.3 612.6 604.4 fpm vs Velocity, Stack gas 498.0 481.1 474.7 acf/min 538.2 Volumetric Flowrate, Acmal Qa 409.7 454.6 396.9 377.5 dscf/min Volumetric Flowrate, Dry Standard Qsd 100.1 97.3 101.8 101.1 % Percent Isokinetic 1,112 1,112 1,112 1,112 lb Glass production 0.0347 0.0347 0,0347 0.0347 tons/hr Total PM 1 290 2 1,199.2 1,294.6 1,376.9 Particulate sample weight-Total mn mg gr / dscf 0.0833 0.0955 0.0852 0.0769 Grain Loading, Actual cg 218.45 195.05 190.67 mg / dscm 176.04 0.297 0.309 0.300 0.283 Ct lbm / hr Particulate Mass Emissions 135.98 128.58 140,11 134.89 gm/hr 8.56 8.89 8.63 8.16 lbm/ton Production basis Filterable PM 1,368.6 1,283.2 1,288.9 1,192.1 Particulate sample weight-Filterable mn mg 0.0848 gr / dscf 0.0765 0.0830 0.0949 Grain Loading, Actual cg 189.83 217.13 193.99 175.00 mg / dscm 0.296 0.282 0.307 Ct lbm / hr 0.298 Particulate Mass Emissions 135,18 128.01 139.26 134.15 gm/hr 8.84 8.51 8.12 8.58 lbm/ton Production basis Condensable PM 7.03 8.30 5.70 Particulate sample weight-Condensable mn 7.10 mg gr / dscf 0.000455 0.000367 0.000575 0.000466 Grain Loading, Actual cg1.07 0.84 1.32 mg / dscm 1.04 0,0012 0.0019 0.0016 Particulate Mass Emissions Ct lbm / hr 0.0018 0.57 0.84 0.74gm / hr 0.81 0.051 0.054 0.047 0.036 lbm/ton Production basis

Particulate Emissions

Client Source	BULLSEYE GLASS FURNACE T7-OUTLET	26-Apr-16 Date PT,BS,JH,MV,JF Operator
Location	PORTLAND OR	
	ODEQ5	mew Analyist/f

Location	PORTLA	AND OR				
Definitions	ODEQ5 Symbol	Units	Run I	Run 2		nalyist/QA
Date, Starting	Byznooi	Cinta	4/26/16	4/27/16	Run 3 4/28/16	Average
Time, Starting			17:30	17:30	17:00	
Time, Ending			9:30	9;30	9:00	
Interval		hrs	16,0	16,0	16.0	
Date, Ending			4/27/16	4/28/16	4/29/16	
Filter, Front			15-8-756	15-8-757	15-8-764	
Volume, Gas sample	Vm	def	539.204	490.014	486.652	505,29
Temperature, Dry gas meter	Tm	°F	69.28	69,73	73,23	70,75
Temperature, Stack gas	Ts	°F	143.33	141.54	147,00	143,95
Temperature, Stack Dry Bulb	Tdb	°F	130	па	117,00	145,7.
Temperature, Stack Wet Bulb	Twb	°F	120	na	na	
Pressure differential across orifice	dН	in H2O	1.108	0.907	0.945	0.99
Average square root velocity pressure	dp^1/2	in H2O^1/2	0,255	0.219	0.224	
Diameter, Nozzie	Dn	in	0,3735	0.3735	0.3735	
Pitot tube coefficient	C_{p}		0.8378	0.8378	0.8378	
Dry gas meter calibration factor	Y		0.99150	0,99150	0.99150	
Pressure, Barometric	Pbar	in Hg	29.90	30,10	30,10	
Pressure, Static Stack	Pg	in H2O	0,1	0.1	0.1	
Time, Total sample	Ø	min	938	950	930	939
Stack Area	As	in²	120.3	120,3	120.3	
Nozzle Area	An	in²	0.1096	0.1096	0.1096	
Volume of condensed water	Vlc	ml	305,9	334.0	323.2	321.0
Oxygen		% O2	20,62	20.60	20.74	20,65
Carbon Dioxide		% CO2	1.38	1.46	1.01	1.28
Molecular weight, Dry Stack	Mđ	Ibm / Ibmole	29.17	29,18	29.11	29.15
Pressure, Absolute Stack	Ps	in Hg	29.91	30.11	30.11	30.04
Pressure, avg arcoss orifice	Po	in Hg	29.98	30.17	30.17	30.11
Volume, Dry standard gas sample	Vm(std)	dscf	534,40	488,23	481.75	501.46
Volume, Water Vapor	Vw(std)	scf	14.40	15.72	15,21	15,11
Moisture, % Stack (EPA 4)	Bws(1)	%	2,62	3.12	3.06	2.93
Moisture, % Stack (Psychrometry-Sat)	Bws(2)	%	21,41	20.32	23,33	21.68
Moisture, % Stack (Theoretical)	Bws(3)	%	na	na	па	21.00
Moisture, % Stack (Psychrometry)	Bws(4)	%	11.19	na	na	
Moisture, % Stack (Predicted)	Bws(5)	%	па	па	, na	
Mole Fraction dry Gas	mfg		97.38%	96.88%	96.94%	97.07%
Molecular weight, Wet Stack	Ms	Ibm / Ibmole	28.87	28.83	28,77	28,83
Velocity, Stack gas	vs	fpm	915.0	782.0	806.7	834.6
Volumetric Flowrate, Actual	Qa	acf/min	764.2	653.1	673.7	697.0
Volumetric Flowrate, Dry Standard	Qsd	dscf/min	650.9	558,8	571.6	593.8
Percent Isokinetic	Ī	%	96,1	100,9	99.5	98.8
Glass production		Ib	1,112	1,112	1,112	1,112
		tons/hr	0.0347	0.0347	0.0347	0.0347
		Total PM				
Particulate sample weight-Total	mn	mg	13.20	8.30	8,50	10,00
Grain Loading, Actual	cg	gr/dscf	0.00038	0.00026	0.00027	0.00031
Doubles Late Many E. 1. 1	a .	mg / dscm	0.872	0.600	0.623	0.699
Particulate Mass Emissions	Ct	lbm/hr	0.00213	0.00126	0.00133	0.00157
		gm./hr	0,96	0.57	0.61	0.71
Production basis		lbm/ton	0.0612	0,0362	0.0384	0.0453
		Filterable PM				
Particulate sample weight-Filterable	mn .	mg	1.50	0.30	3,90	1.90
Grain Loading, Actual	cg	gr / dscf	0.00004	0.00001	0.00012	0,00006
		mg / dscm	0.099	0.022	0.286	0.136
Particulate Mass Emissions	Ct	lbm/hr	0.00024	0.00005	0.00061	0.00030
		gm / hr	0,11	0.02	0.28	0.14
Production basis		lbm/ton	0,0070	0,0013	0.0176	0.0086
		Condensable PM				
Particulate sample weight-Condensable	mn	mg	11.70	8,00	4.60	8.10
Grain Loading, Actual	cg	gr / dscf	0.00034	0.00025	0.00015	0.00025
		mg / dscm	0.773	0,579	0.337	0,563
Particulate Mass Emissions	Ct	lbm/hr	0.00188	0,00121	0.00072	0.00127
		gm/hr	0.96	0.55	0,33	0,58
		giii / iji	0.86	0.55	0,33	0,50

				•	-	
INLET						
Filterable Particulate Mass Emissions	Ct	lbm / hr	0.298	0,282	0.307	0,296
Condensable Particulate Mass Emissions			8100,0	0.0012	0.0019	0.0016
Total Particulate Mass Emissons			0.300	0,283	0.309	0.297
Filterable Removal Efficiency			99.92%	99.98%	99.80%	99,90%
Condensable Removal Efficiency			-4.72%	-0.93%	62.00%	18,78%
Total Removal Efficiency			99,29%	99.56%	99.57%	99,47%

Client: Bullseye Glass Company Source Baghouse BH-1 Outlet

Date 1/26-9/29/16

Project # 5702

Run# /

Molecular Weights (lb/lbmol):

CO₂=44.0

N₂+Ar=28.0

Constants:

Pstd(1)=29.92129 in Hg | Tstd=527.67 °R | Kp=5129.4

C2=816,5455inHg in²/°R ft²

Pressure, Absolute Stack (Ps):

Ps, inHg =
$$P_{\text{Barometric}} + \frac{P_{\text{static}}}{13.6} = \frac{29.90 \text{ inHg} + \frac{0.1 \text{ in H2O}}{13.6}}{13.6} = \frac{29.91 \text{ inHg}}{13.6}$$

Volume, Dry Standard Gas Sample (Vm[std]): $Tm = 69.28 \, ^{\circ}F + 459.7 = 528.98 \, ^{\circ}R$

Orifice Pr ess = Pb
$$\underline{29.90}$$
 inHg + $\frac{1.108 \Delta H}{13.6} = \underline{29.98}$ inHg

$$Vm(std)ft^{3} = \frac{Y \times MeterVol \times Tstd \times Orifice \Pr{es(Po)}}{Pstd(1) \times Tm^{\circ}R}$$

$$= \frac{0.99/50 \times 539.204 \text{ ft}^3 \times 528^{\circ}R \times (Po_29.98 \text{ inHg})}{29.92 \text{inHg} \times 528.98 \text{ }^{\circ}R} = \underline{534.70} \text{ dscf}$$

Moisture, % Stack Gas (bws): $V_{wstd} = 0.04706 \times Cond.H2O, ml = 0.04706 \times 305.9 ml = 14.40 \text{ scf}$

bws =
$$100 \times \frac{V_{\text{wstd.}}}{V_{\text{wstd.}} + V_{\text{mstd.}}} = \frac{14.40 \text{ scf}}{14.40 \text{ scf} + 534.70 \text{ dscf}} = 2.62 \%$$

Mole Fraction Gas (mfg):

$$1 - \frac{\text{bws}}{100} = 1 - \frac{2.62\%}{100} = 0.9738$$

Molecular Weight, Dry, Stack (Md):

$$Md \frac{lb}{lbmol} = \left[(1 - \frac{O_2}{100} - \frac{CO_2}{100}) \times MolWtN2Ar \right] + \left[\frac{O_2}{100} \times MolWtO2 \right] + \left[\frac{CO_2}{100} \times MolWtCO2 \right]$$

$$= \left[(1 - \frac{20.62 \% O_2}{100} - \frac{1.38 \% CO_2}{100}) \times 28.0 \frac{lb}{lbmol} \right] + \left[\frac{20.62 \% O_2}{100} \times 32.0 \frac{lb}{lbmol} \right] +$$

$$\left[\frac{1.38 \%CO_2}{100} \times 44.0 \frac{lb}{lbmol}\right]$$

$$= \underline{\frac{29.05}{lbmol}} \frac{lb}{lbmol}$$
 Molecular Weight, Wet, Stack (Ms):

$$Ms \frac{lb}{lbmol} = (Md \times mfg) + (MolWtH_2O \times (1 - mfg)) = \left(\frac{29.05}{lbmol} \times \frac{lb}{lbmol} \times \frac{0.9738}{lbmol}\right) + (18.0 \times (1 - 0.9738))$$

$$= \frac{26.76}{lbmol} = \frac{lb}{lbmol}$$

2

Client: Bullseye (alass (empany

Date 4/26-4/29/16

Stack gas (vs):
$$Ts = 145.33$$
 °F + 459.7 = 603.03 °R = $vs \frac{feet}{min} = Kp \times Cp \times dp \sqrt{inH_2O} \times \sqrt{\frac{Ts^\circ R}{Ps \times Ms}}$ = $5129.4 ft / min ... \times 0.637B \times 0.255 dp \sqrt{inH_2O} \times \sqrt{\frac{b^03.03^\circ R}{29.91 inHg} \times \frac{28.76}{lb}} = \frac{917.5}{lbmol} = \frac{ft}{min}$ Flow Rate, Actual (Qa):
$$Qa \frac{actualCubicFeet}{min} = \frac{AreaStack \times vs}{144} = \frac{120.3 in^2 \times 917.5}{144} = \frac{ft}{min} = \frac{766.5}{acfm} \times \frac{603.03^\circ R}{min} = \frac{766.5}{acfm} \times \frac{603.03}{acfm} \times \frac{29.91 inHg}{acfm} \times \frac{29.92 inHg}{acfm} \times \frac{29.92 inHg}{acfm} \times \frac{29.99 inH$$

Client: Bullseye Glass Company Source Baghouse BH-1 Outlet Date 4/25-4/29/16 Project # 5702 Run # 3 Total PM

PM Emissions Production Based: lb/ton glass production:

Measured PM Results, lb/hr_ 0.00/33

Equation:
$$\frac{lbPM}{tonGlass} = \left(\frac{lbPM}{hr}\right) \times \left(\frac{batch}{lbGlass}\right) \times \left(\frac{16hrs}{batch}\right)$$

Calculation: $\left(\frac{0.00133 \ lbPM}{hr} \right) \times \left(\frac{batch}{1.111.81 \ lbGlass} \right) \times \left(\frac{16hrs}{day} \right) x (2000 lbGlass / 1 tonGlass) = \frac{0.0383 \ lbPM}{tonGlass}$

% removal efficiency =
$$\frac{PMin(\frac{15}{hr}) - PMovt(\frac{15}{hr})}{PMin(\frac{15}{hr})} \times 100$$

Total PM Outlet $\frac{PMin(\frac{15}{hr}) - PMovt(\frac{15}{hr})}{PMin(\frac{15}{hr})} \times 100$

= $\frac{0.283^{15}/hr - 0.00126^{15}/hr}{0.283^{15}/hr} \times 100$

= $\frac{99.55\%}{}$

Field Data Sheet

								·					
			Whitaker Way	1	7 . 1				Client	BULLSE	EYEGL	45 <u>5</u>	
	N I N	•	OR 97230	Al	<i>F</i> 11		. Facility Location: Portland OR						
MON	TROSE	T (=00)	93) 255-5050 355 0505	Clara No. 1	.		Source: 7-7						
	16/16		455-0505	4	Measurement	,				: In(et		eat Set	5-0 OF
Test Met				1 2		- .		st Pitot l					D=damaged)
	ent Testing	1/25		3		- ,309	Pitot L		мэрссио				2 @3
Run#	1	,				-		@in H20)	Lo			065
Operator		Support			ALT-011	_	Nozzle	5-12		Oven (*	ァ -5(In:		1 GN-2
		ient FO			(ID/°F) <u> </u>			1587				at Set \	
Moisture		Tdb .	ress., Bar (Pb) 29, 9	•	C (ID/°F) <u>8</u>	_	ARTON PARTY AND ADDRESS OF	n	dH@	1,2971	The second of the latest second district.	У 9	
	tatic (Pstat) Flow Expe		H yes, avg. null angle	degrees	inuity Check	[_/or↓	Mete Leak C			Pretest:	0.66 T	cim cim	(6 inHg
Traverse	Sampling	Clock	Dry Gas Meter	Velocity Head	Orifice Pressure	Orifice Pressure	STACK	PROBE	OVEN	IMPINGER	METER	METER	Pump
Point Number	Time min	Time (24 hr)	Reading ctift	in FI2) (dPs)	in H2O DESIRED	H2O ACTUAL	Ŧ	°f	Filter °F	Outlet °F	Inlet/Avg.	Outlet °F	Vacanna inHg
	(dt)	1,2,2	(Vm)	·		(dH)	(T _S)	(Tp) Amb:	(To) Amb;	(Ti) Amb:	(Tm-in) Amb:	(Tm-out) Amb:	(Pv)
	<u> </u>	1730	512 .471			H-1/24		_					
1 1	10		526 .345	.065	10,418	0,5	130	250	250	67	77	79	1.5
, \	20		530 .402	,067	15-24	,52	119	250	250	76	5 0	79	1.5
₃)	2,0		634 423	,066	,52	152	171	250	750	60	85	80	1.5
4 4	40		537.803	,053	1366	,37	195	250	250	55	86	81	1,5
5 5	50		540.918	.045	,311	,31	195	250	249	5-4	86	82	
6 b	60		543.552	,041	1783	126 28 30	162	250	250	53	86	83	1
₇ 7	1.10	1840/1895	547.456	,053	,399	,40	141	250	usb	57	९ ४	84	1,5
8 B	1-10		550.976	.052	1376	.38	166	256	251	26	86	85	1.5
9 9	1.30		554.643	ا کور	.397	,40	109	250	258	54	89	16	1.5
10 10	1.40		557.754	,039	,310	٠٦(215	250	জ	58	90	87	1.5
11 11	1.50		560.692	,038	.266	.ኒጉ	186	250	25(61	91	88	1.5
12 [1	2.00		563.682	450,	17 78	128	141	250	しらり	60	91	88	1.5
13 / 1	270		566 .85G	,041	,305	131	143	ગ્ડડ	245	60	90	89	1.5
14 i (1° L0		569,749	,035	.264	،٤6	150	250	ಚಾ	59	90	89	1.5
15 (0	2.40		572.691	160.	.168	.27	232	ισο	१८०	61	71	89	1.5
16 9	2.40		575.566	, 035	156	.26 , 293 93	158	£570	૧૬૪	62	90	89	1.5
17 🞸	2.50		578.669	,040	1.43545 916 24976	, 293 '3	155	250	ารับ	61	90	89	1,5
18 7	7.00		581.571	, ૦૩ (૦	10,264	,۲6		250	258	G1	90	<u>۱.</u>	1.5
19 6	3.10		589.518	, o 37	1276	.૪૪	146	ાજ	ગડે	G	89	88	1.5
20 5	3.20		587.589	,042	, ૧૪૧	,29	196	25B	ાકરુ		8ግ	S'L	1.5
21 4	3.30		590 454	.039	,159	,२६	130	250	~50	58	88	85	1,5
	3.40	103	593.499	.०५३	.186	،٤٩	227	250	750	ક શે	88	85	1.5
23 1	3.50	(13 ⁹ /13)	596.754	,050	ر 333	133	પછ	150	249	2.8	38	87	۲,5
24	4.00		600 642	1057	,453	,45	170		~50	59	87	87	1.5
25	4.10		604.554	, 05 b	.۴۴۵	ال ،	150	150	150	53	ଝ୍ୟ	87	1.5

			1	<u> </u>	Telu Data	Bitte							
		12505 NE V	White kor Wor	<u>-</u> -	LA PAGE				Client: j	30LUSE	YE GL	ASS	
	. 1976s.	Portland, O	Whitaker Way OR 97230				Fa	cility Lo	cation: (SORTLA.	VD 00	L	
	' '	Phone (503)	255-5050						Source: "				
ADE GUACI	Commence of the Commence of th	Fax (503) 2:	55-0505	Glass Nozzle M	leasurements	•	Probe 3			1257 1847	7 Hea	t Set つ	
	126/16			1 -	·		Probe 3			(877)	(NC no	change, D	=damaged)
Test Metl	nt Testing	Yes_		3		.309	Pitot Lk F			Pre: Hi C		Post O	
Run#	int resumg	15/2					in H2O@i				7 @ Y	9	
Operator			TL, TF,		ALT-011	~~*	Nozzle 9			Oven 05			<u>€</u> 70°F
		ent 40 (. Std TC (I	D/°F) <i>9'†</i> ! (ID/°F) <u></u> 8'†	3-5-	Filter Meter Bo	5 8 75 x 35 (dH@ /	7972		Y GO	
Moisture		Tdb ~	- Twb - ess., Bar (Pb) 29.9		nity Check	or 1	Meter			Pretest:		attractive delication of the	and the property of the same o
Cyclonic	Flow Expec	ted ? NO]	If yes, avg. null angle_	degrees			Leak Che				7770	efm 0	inHg Pump
Traverse Point	Sampling Time	Clock Time	Dry Gos Meter Reading	Velocity Head in H2)	Orifico Pressure in H2O	Orifice Pressure H2O	STACK	PROBE	Filter	IMPINGER Outlet	METER Inlet/Avg.	Outlet *F	Vacuum
Number	min (dt)	(24 lu)	cuft (Vm)	(dPs)	DESTRED	ACTUAL (dH)	(I3)	°F (Tp)	°F (To)	°F (Tí)	°F (Tm-in)	(Tm-out)	inHg (Pv)
	(di)						Amb: A	Amb:	Amb;	Amb:	Amb:	Amb:	
l	4.20		608 420	,055	4045	,45	149	258	เรษ	54	90	87	٦_
, 3	4.30		612 . 175	,054	.421	,42	182	vsv	244	5-Y	91	87	3
3 4	4.400	14/26	616.386	,56L	531	,53	(25	250	250	55	90	87	3
, 5			(10,003	,051	,390	,35	195	USO	757	5-4	91	87	2.5
, <i>\(\varphi \)</i>	45.00	1207/1308	623.514	, ०५।	13144	, 31	196	750	ารับ	54	90	87	2.5
, 7	5.10		676.996	,044	,364	,	146	7250	บรอ	47	જડ	87	2,5
7 8	5.10		630.638	.044	,394	.39	100	250	८५७	५९	86	87	2,5
s 1	5.30		634.270	,०५३	345	139	100	rζo	251	45	86	87	2,5
9 10	5.40		637.946	,०५९	,411	,५।			245	46	87	8.2	3
10	5.50		641:770	,052	,436	.44	_	250	てなり	46	87	86	3
11 (Z	6.00		645.202	.542	,360	136	_	८६०		44	88	85	3
12 (كـ	ľ		698.556	F 190°,	.343	. 39		ሪያሪ	८८०		88	85	3
13 []	6.19		651.683	,०५१	299	.30		~ડઇ		45-	87	86	3
14 10	6.30		654.876	,042	, ३०६	,31	510		250		87	85	"3
15 9	6.40	<u> </u>	658.077	10395	1318	36		LSB		47	87	82	<u>'</u> ኝ ,
16 8	6.56	<u> </u>	661.506	,०५८	,354	,35		250		47	88	85	3.5
17 7	7.00		665.529	1057	,485	.45			73D	·	87	86	3.5
18 6	7110		668.695	.037	,307	,31			પડ્ડ		88	82	3
19 5	7.10		671.595	1035	1262	.76	ો ગ		250	1	87	86	3
20 4	7.30.		674.793	1042	3146	,3/	210		250	90	87	85	3,5
21 7	7.40	<u> </u>	677 . 807	1039	. 2906	,29	2/1	1	250	51	868		3,5
22 7	7.50		68 1.055	.042	.318	.32		250		52		1236	3.5
23	8.10	20	684.549	1046	, 366	137	1 68	250	250	50	86	65	3.5
24			-								<u> </u>		
25					1			<u> </u>			<u> </u>		
فدمت		1	I				···						

					•	ricia Daa								
Å	A	13585 NE	Whitaker	Way						Client:	Bulls	040 (2515	1
		Portland,	OR 97230					1	facility L	ocation:	Parth	and OK	1	
MON	TRASE	•	3) 255-505	50				ļ		Source:	7-7	L	•	
· · · · · · · · · · · · · · · · · · ·	TROSE	Fax (503)	255-0505		4	Measurements	•		Sample L	ocation:	inle	7		
Date	<u> 1/27</u>	//(1						P.8477		at Set 2	
Test Metl		V			2 .		. 309			nspection			The second second	D=damaged)
Run #	nt Testing l	Yes			,		•	Pitot Ll	: Kate Din H2O		Pre: Hi		Post	
Operator	iTM.	Support	RL	JF	L	ALT-011		Nozzle					- 16	6N2
	ture, Ambi	73.0	(Ta)		- . Std TC ((ID/°F) 847	4 JL		5876	· · · · · · · · · · · · · · · · · · ·	Citalog		at Set 2	
Moisture	c-	Tđb		Twb —	Stack T	C (ID/°F) 54	3-5	Meter B			1,747	29	y ,9	99/6
		-() '\ P1				nuity Check	or t	Mete	r		Pretest: (cfm /	(, inHg
				g, null angle_4				Leak Cl	or mercor was at Tables	2 No	Post: ()		cfm	9 inHg
Traverse Point	Sampling Time	Clock Time		Gas Meter Reading	Velocity Head in H2)	Orifice Pressure in H2O	Orifice Pressure H2O	STACK	PROBE	OVEN Filter	IMPINGER Outlet	METER Inlet/Avg.	METER Outlet	Pump Vacuum
Number	min (dt)	(24 hr)		cuft (Vm)	(dPs)	DESIRED	ACTUAL (dH)	°F (Ts)	°F (Tp)	°F (To)	%F (Ti)	″F (Tn⊢in)	°F (Tm-out)	inHg (Pv)
		3,50	684	.696				Amb:	Amb:	Amb:	Amb:	Amb;	Amb;	
, (8.10		ns 87	.26	.022	,1913	.14	108	255	245	59	80	80	1
2 2	8.20	भ	1689	.787	:024	.2163	.21	87	250	253	55	79	79	1
3 3	8.30		692	.425	.024	. 2185	,22	86	260	250	55	79	99	1
4 H	8.40		694	.859	.022	, 199	120	87	250	250	54	81	81	}
5 5	8.50		697	.660	.027	12447	.24	86.	250	250	54	81	8/	1,5
6 6	9,00		700	14513	.028	,2528	.25	88	250	250	53	81	81	2
7 7	9,10		793	3 60	1025	,226	,23	87	250	250	52	82	80	3
s 8	9,20		705	. 534	,0186	1560	.18	130	230	250	51	82	80	3
9 0	9, 30)		708	<u> </u>	102/6	1799	.18	134	250	250	51	82	80	3
10 10	9,40		710	.555	,024	12013	20	130	257	250	48	81	81	3
11]]	<u>4,50</u>		713	065	v025	,1924	,19	183	250	250	44	81	8)	3
12 [2	10.00		715	376	10183	.155	./6	123	20	250	51	81	81	3
13 12	10,10	·	117	.920	,020	. 1 88	.19	117	250	250	50	81	F/	3
14	10,20		720	. 350	1022	178	,18	149	250	250		81	81	3
15 10	10.30		722		1027	,220	.27	146	250	250	49	JO.	80	3 .
16 4	10.40		725	.547	1924	,196	,20	143	250	' '	49	80	80	4
17 8	10.50		728		,023	.180	.18	168	250		44	79	701	4
	11.00		730	.680	.026	,2 ()	.21	148		250	46	79	79	4
	11,10		733	. 1.90	.023	1200	,20			250	47	79	79	4
	11.20	,	735	.676	,0228	,/49	20	102		250	47	74	79	4
21 4	1130		737		10184	161	1/6	103		260	49	80	80	4
22 3	11.40		740	.575	10288	. 233	.24	71		250	50	79	79	4
23 2	11.30		743	<u>. 130</u>	.0236	,214	,21	84		250	51	79	79	4
24	12.00		745	747	10238	1215	.22	96		250	54	}@	80	
Notes:	12.10		748	.321	.0226	1205	,21	86	250	261)	54	82	80	4
110169.														

					4	rieiu Data	Bheet							
								1			1) (1		11	
ė.	, da	13585 NE	Whitaker V	Vay				1		Client:	By Ilse Porth	ye b	21972	·
		Portland, (OR 97230					F	cility Lo	cation:	Porth	ind, OK		1
100	' '	Phone (503	3) 255-5050					H		Source:	1-7.			-
MON	TROSE	Fax (503) 2			Glass Nozzle N	Aeasurements		<u></u>			Inlet		,	50 07
Date U					1	6		Probe 3-			8472		t Set Z	
Test Met					2 .		309	Post-Test	Pitot In	the same of the same of the same of				=damaged)
	ent Testing	Yes	.+**		3		: 7(\)	Pitot Lk?		_	Pre: Hi		Post Q	@ }
Run#	ant I tomag	(3			,			in H2O@			Lo			<u> </u>
Operator	· 3M	Support	BC J	F		ALT-011		Nozzle 5			-کا (Oven			
	ture, Ambi		(Ta)		. Std TC (1D/°F) 84	<u> </u>		58 71		1,797	2.9 Hea	t Set 2	7) °F
Moisture	-	Tdb		wb -		C (ID/°F)	3-5	Meter Bo	x 25		999		¥ 9	9416
	atic (Pstat)		ess., Bar (P	ы 290		unity Check	or ↓	Meter			Pretest: (16 M	cfm	6 inHg
Cyclonie	Flow Expe	cted? 10	If yes, avg.	null angle_	degrees	- 0		Leak Ch	eck		Post: O.		cfm 9	inHg
Traverse	Sampling	Clock	Dry G	ins Meter	Velocity Head	Orifice Pressure	Orifice Pressure	STACK	PROBE	OVEN Filter	1MPINGER Outlet	METER Inlet/Avg.	METER Outlet	Pump Vacuum
Point	Time	Time (24 hr)		ending cuft	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	°F	°F•	°F	°F	٩F	*F	inHg
Number	min (đ t)	(54 m)		Vm)]	1	(dH)	(Ts) Amb:	(Tp) Amb:	(To) Amb:	(Ti) Amb:	(Tm-in) Amb:	(Tm-out) Amb:	(P1)
	 			 -	1,0240			·						
		\	750	942	500	12175	,22	89	250	250	55	82	80	H
1 2	1220	<u> </u>	750	742	200	12/77	<u>'</u>	0 '	-)0	20		<u> </u>		-4
2 3	12.30		7-53	. 5-60	,0228	.2066	,21	86	250	250	56	82	81	
, H	12.40		756	. 3406	.0271	,2456	,25	86	250	250	54	82	81	4
4 5	12.50		75 8	814	,0212	,1787	,18	127	250	250	55	82	81	4
7	13,00	<u> </u>	761	074	019/	.1580	16	138.	250	250	56	82	81	4
5 0			763	465	0204	.1674	.17-		250	290	58	82	81	4
6 7	13.10	<u> </u>	1	666		:1797	18	158	250	250	58	82	81	4
7 8	13.20	<u> </u>	765	. 866	(0224	1690	117	156		250	59	82	FZ	і
8 9	13,30	0.20	768	.20		1997	,20	148	240		59	82	FZ	14
9/0	13,40	9.30	770	.772	1.0245	, 1997	,20	1 10	24(1	250	7	0 -	100	
10	ļ			,	<u> </u>			-				 		
11	<u> </u>					<u> </u>				<u> </u>		-	 -	
12							1.	_		<u> </u>	,		<u> </u>	
13					· · ·					ļ			<u> </u>	
14				•						ļ	ļ	<u> </u>	<u> </u>	
15										<u> </u>	ļ	<u> </u>	<u> </u>	
16				,					ŀ	<u> </u>	<u> </u>		ļ	
17										<u> </u>				<u> </u>
	1			•								1		<u> </u>
18														
19	- 	1												<u> </u>
20														
. 21	-	-	<u> </u>	•			1			1				
22		-	 			1			1	1	1			
23	<u> </u>	_	-					_	 	 	ļ	1	-	1
24				•		<u> </u>	-		-	+-	+	+	1	
25	1	ļ		•										<u> </u>

	٠,		7				
٠	7	•		4	CII	- 4	

A	A.		Whitaker Way							HOUS C			
	MIN	Portland,					F	acility L	ocation:	PORTLA BLAST	EULWA MD 0	(C) 7	
MON	TROSE	TT . (*0.5)	3) 255-5050 255-0505	Glass Nozzle I	Aggenromente	,				INCET		100	. '
Date 4		Far (303)	233-0303	Giass Nozzie P			Probe			p .836		ıt Set	ኒናው F
Test Met				2	-	٠.	Post-Tes					change, [=damaged)
	ent Testing	0061		3		- ₁ 308	Pitot Lk	Rate	and the second	Pre: Hi	ኃ@ \$) @ 뚜
Run#					·····		in H2O(© @≤) @ 5
Operator		Support	AT V	OUT TO A	<u>ALT-011</u> (D/°F) <u>5}†</u>	72	Nozzle Filter (-1	Oven 05			<i>(-30</i> ১১৩ °F
Moisture Moisture	ture, Ambi	ent 35 5 Tdb	(Ta) - Twb -	Stack TO	ログチ) <u>ウ(1</u> C (ID/ºF) <u>シ4</u>		Meter B		dH@	1.7472		Y .9	
			ess., Bar (Pb) ろさ、\		nuity Check		Meter			Pretest:		cfm (
		eted ?_Vb	If yes, avg. null angle_	degrees		, ,	Leak Cb		, Name and a contract of the c		0,006	cfm	ß inHg
Traverse Point	Sampling Thus	Clock Time	Dry Gas Meter Reading	Velocity Head in H2)	Orifice Pressure in H2O	Orifice Pressure H2O	STACK	PROBE	OVEN Filter	IMPINGER. Outlet	METER Inlet/Avg.	METER Outlet	Pump Vacuum
Number	min (dt)	(24 hr)	сиЛ (Vm)	(dPs)	DESIRED	ACTUAL (dH)	°F (Ts)	°F, (Tp)	°F (To)	°F (Ti)	°F (Tnt-in)	°F (Tm-out)	inHg (Pv)
		1730	771.425				Amb:	Amb:	Amb:	Amb:	Amb:	Amb: 	
1 / L	(0		7.74.335	, ७५८	162	.76	141	ጊ ሬ ነ	227	65	76	77	1
2 /1	10		777 453	8501	1303	,30	146	ιςυ	≀ 57	54	79	¥7	l
3 10	30		780.547	৽১৭	, 287	,ጊኻ	191	てらひ	251	5 2	82	78	-
4 9	40		783,406	, to \$ 4	155	.76	192	ጊ 50	১९४	51	43	78	1
5 %	50		786.176	633	,248	, しぢ	157	250	いらひ	54	82	81	١
6 F	1-00		ት ቔቔ . ٩ ሪ ኖ	.032	いざし	, ۲۲	162	રહ્ય	250	52	1986	82	1.5
7 b	(-10			.039	, ን ጊን	.ንጌ	131	เร ั⁰	~50	5-4	86	83	1.5
ε 5	1.00		795, 415	1046	, ፯ጜን	،3ጘ	215	251	250	51	87	¥Ψ	1.5
, <i>U</i>	1.30		799, 427	, 035	,256	،٦6	222	250	১১০	49	87	<u>४५</u>	1.5
10 3	1.40		801 , 188	といり、	.242	,۷۲	บาร	250	٤٩٩	57	86	85	1.5-
11 1	(-50		४०५.२५४	.536	,٦ 86	ر29	७२५	ารอ	<u> </u>	5-1	85	84	1.5
12	7.00		807.167	,035	, LS 6	, T.G	126	১৻৻৳	a_5 (पद	82	81	6.5
13	ე-(0		810.614	1045	<i>ነ</i> ን ጉ ነ	. 3ገ-	(3°1	૧૬૦	520	48	385	४५	٦
I4 Z	2.20		813.564	,७३४	_የ ኒጉና	،۲8	712		250	47	85	83	٦
15 3	~30		416.684	. હ્યાર	,५०५	,3 0	233	250		५५	89	83	ζ,
16 4	2.40		819.549	,०५(,,	,२७(رگاه		250		98	83	83	٤
17 5	2.50		४१२,५४५	1979	,२५०	۲۲,	240			બલ	83	83	٦.
18 6	3-00		824, 926	1000	, 223	. 22	204	250	~10	51	82	83	٦
19 7	3.10	<u> </u>	198. 118	, ወንና	.171	۲٦,	1.77	२५५		53	85		~
20 🕏	2-20	ļ <i>,</i>	831 .082	,০3 ণ	.3(9	,3 L	143	250	i	\$ (86	84	J.5
21 9	3-30	<u> </u>	834.145	,83 K	,285	,ኒጎ	100	2 5 0	<i>\</i> 5V			84	こ,5
22 16	3 40		837. [9]	ئ <i>ه د</i> ا	, 185	, ጊኒ	<u> </u>	૧૬૫	250	49	85	89	7.5
23 1 (2.20	<u> </u>	439.559	,025	،۱٦٤	(18	239	150	₹	49	85	84	ጊ،ኝ
24 12	4.00	<u> </u>	४५८ .७५२	. ૦૧ વ્યું	,199	,20	232	250	250	52	44	<u>६५</u>	2,5
25													

Notes:

A	A	13585 NE V	Whitaker Way						Client:	BULLSE	Ye &	nliAes O	
		Portlan d, C	1				F:	acility L	ocation:	POCTLA	CODATE	イ- ユ	
MON	しおくりくと	Phone (503								YAST FU	LIUGACE	1 3	
ATH OBJUIL	v SERVICES .	Fax (503) 2	55-0505	Glass Nozzle M	leasurements				ocation:	م الاعرا p ، الاعرا	*25 Mas	t Sat T	-SO 012
Date 1				1 -			Probe >						=damaged)
Test Meth		4 % ()		3		309	Pitot Lk			Pre: Hi) @4
Run#	nt Testing	806(٠ .		÷	in H2O@				<u>υ@5</u>		2@5
Operator		Support			ALT-011		Nozzle 4	_	A 1 170 A 100	Oven 🗸 S			1-30
	ure, Ambic		(Ta)	Std TC (I	D/°F) <u>5 {+</u>	72	Filter 1	ና ፄጉ۱				t Set	.≳⇔ e.Ł
Moisture	\$%	Tdb -			(ID/ºF) <u> </u>	구 ಒ	Meter Be	ox 25	dH@	.7972	٩.	Y (G	1916
Press., Sta	atic (Pstat)	– , ን Pro	ess., Bar (Pb) 30.1	Contin	uity Check 🖰	7or ↓	Meter	•		Pretest:			
			If yes, avg. null angle_	degrees			Leak Ch				(1000	efm METER	inHg Pump
Traverse Point	Sampling Time	Clock Time	Dry Gas Meter Reading	Velocity Head in H2)	Orifice Pressure in H2O	Orifice Pressure H2O	STACK	PROBE	OVEN Filter	IMPINGER Outlet	METER Inlet/Avg.	Ontlet	Vacuum
Number	min (dí)	(24 hr)	ouft (Vm)	(dPs)	DESIRED	ACTUAL (dH)	°F (Ts)	°F (Tp)	°F (To)	°F (Ti)	°F (Tm-in)	°F (Tim-out)	inHg (Pv)
	(ui)	Ì	(1.12)	i. 2.		, ,	Amb:	Amb:	Amb:	Amb;	Amb:	Amb;	
-	t		844 916 A	pr	,259		189		250	52	84	84	2.5
1 12	4.10		412.041	P.E.O.,	, L 3 (. L G	(15)	250	130	3 6			
2 11	ધ.૧૦		847.699	, ७३।	. २५७	,75	163	८८०	25 (50	84	84	٦,٢٠
3 10	4.30		550.666	, ७ړ,	, 267	٠ ٤ ٦	12.}	υζο	てらむ	51	४५	84	3.
4 9	4.40		853.655	् ० ५५	.८४५	. ٤8	15 1	रहि	250	50	84	४३	3
5 8	4.50		857,060	, ७५७	, 355	, 3,6	ílο	251	てどひ	50	જપ	€ 3	3,5°
6 }	4.60		960 031	035	179°	`58	186	250	UST	५४	85	83	3
₇ 6	5.10		861 660	,٥١٩	įllo	, ۲۲	219	250	250	50	84	83	3
8 5	ς ⁻ . ι ο	2741 (2310	865,471	,૭६५	.753	125	231	১১৮	520		80	82	3
9 4	5.30		869.123	,049	,५७१	-91	156	250	150	51	81	81	7
10 3	5.40		872.755	,o48	.401	.40	144	rzg	ารษ	46	81	82	4
11 1	5",50		<i>ፍ</i> ጉር ጊትና	्०५५	1382	.38	133	Σ δδ	249		82	81	4
12	6.00		879.746	.046	, 366	.37	187	८५७	250	 	43	81	4
13	6.10		882.86°L	, a % 4	,১৭৭	.30	11.2	250	245	47	83	81	4
14 1	6.50		885,753	, હુક લ્	بدنوا	,२७			257		83	81	7.5
15 3	6.30		148. 888	,029	1717	, 22	128	-	250	 	82	જ ા	3.5
16 Y	6 40		891.275	1033	, २७।	, ጊር ነ	[91	250		<u> </u>	82	81	-5.5
17 (*	6.30		४९५.२९५	,०३५	185	128	159			 	81	81	3.5
18 6	7160		497.594	.041	,34	.34	150	550	257	+	82	81	4
19 🥎	7.10		900 .761	,e37-	,307	.31	153	251	250	 	82	81	4.5
20 😯	7 lo	 	903 .841	.৩35	.304	,30	132	250		47	82	81	4,5
21 5	7.30		906.942	·033	.2906	.29	123	290	250		- 13	81	4.5
22 1	7.40		909 .728	,03/	.237	,24	213	250	250	47	81	80	4,5
23 [1	7.50		912 447	,03/	.232	,23		230	250		81	86	4.5
24 (L	ଝ ∙ ୦୦	2,00	914 .920	,025	. 187	.19	226	250	250	48	81	80	45
 25		- 4124							<u> </u>				,
1				. 21									

Notes: Leak Sector from 914,920 to 915,065

HORIZON ENGINEERING 16-5702

Δ	.1.	13585 NF	Whitaker Way				T		Client	Q. 11.	no a la	her	
		Portland,	•			•	1	Facility L	ocation:	By 1150	290 D ad 01	MJJ)	
MON	TROSE	Phone (50	3) 255-5050	1				_	Source:	Portla. Blast	Farnas	e 1-7	,
MR QUATI	IX SIEVICIA	Fax (503)	25 5-0505		Measurements			Sample L	ocation:	Inle	T		
Date Test Met	4/28/	76		$ \frac{1}{2}$		• .	Probe 7		(g / s) C nspection	p 183			D=damaged)
	ent Testing	9061		3		.309	Pitot Ll		nspection	Pre: Hi	THE RESERVE	Post () @ 4
Run#	2	9001	***************************************	1		,		@in H2O)	Lo			0 @ 5
Operator		Support	BC JF		ALT-011	4.	Nozzle	512		Oven ()	5-5 Im _]	,	
	ture, Ambi		(Ta)	Std TC ((ID/°F) <u>5/7</u> C (ID/°F) 2	42 42	Filter Meter B	1587		1. 795		Y C	050 °F
Moisture Press St	atic (Pstat)	Tdb −, 3 Pr	ress., Bar (Pb) 37/1		nuity Check	•	Mete	CHARLES THE STATE OF THE STATE		Pretest:	Contract of the Contract of	efm /5	- inHg
			If yes, avg. null angle	edegrees	land, Shota () 01 4	Leak Cl			Post: ()	906	efm /	inHg
Traverso Point	Sampling Time	Clock Time	Dry Gas Meter Reading	Velocity Hend in 112)	Orifice Pressure in H2O	Orifice Pressure H20	STACK	PROBE	OVEN Filter	IMPINGER Ontlet	METER Inlet/Avg.	METER Outlet	Pump Vacuum
Number	min (dr)	(24 hr)	cuft (Vm)	(dPs)	DESIRED	ACTUAL (dH)	°F (Ts)	°F. (Tp)	°F (To)	°F (Ti)	°F (Tm-in)	°F (Tm-out)	inHg (Pv)
	(-)		915 065				Amb:	Amb:	Amb;	Amb; —-	Amb:	Amb:	, ´
1	8.10	2.35	918.541	10406	.368	.37	105	258	262	54	79	79	4,5
2 2,	8.20		421 . SF2	,0325	, 290	,29	114	248	290	46	80	79	4.5
3 3	8.30		924 . 332	.0265	1235	124	118	251	250	45	80	74	4,5
44	8.40		927.047	1.0255	.226	.23	116	250	250	47	80	79	4,5
5 5	8,50		929. 170	.0266	, 229	.23	133	250	250	48	80	79	4,5
6 6	9,00		932.312	· Q 244	. 21]	,21	1 33	250	250	48	50	79	1/5
7 7	9,10		934 701	1022	1/80	118	165	250	250	49	80	79	4,5
8 8	9,20		937 . 191	, nz	189	.19	165	259	250	49	80	79	4,5
9 9	9,31		939 595	.020	1187	.18	 	250	250		80	79	45
10	9,40		941 939	, OU	,174	.17	159	250	250	49	79	79.	4.5
11) {	9,50		944 . 356	1021	,175	1/8	153	2-50	250	5Q	80	79	4,5
12 2	10,00		946 . 898	.023	.190	,/9	159	250	250	50	79	79	45
13 12	10.10		949.228		167	.17	154	250	250	50	79	78	4.5
14	10,20		951 .575		1724	.11	161	250	250	50	78	78	
15 / ()	10.30		953 . 879			17	156	250	250	49	79	78	45.
16 Q	10.40		956.158	,019	, 157	.16	159	250	25()	50	78	78	45
17 8	10.50		958.424	1019	157.	116	159	250	250	49	78	78	4,5
18 7	1100		960.650	1.018	1149	. 15	155	250	250	49	78	78	4,5
19 6	11,10		962.821	.019	.158	16	月子	250	257)	49	79	78	45
20 5	11,20	,	464.175	(0.23	.214	.21	90	250	250	52	78	78	4,5
21 4	11.39		967.999	.027	. 293	,25	85	250	250	52	79	78	4,5
22 3	11,40		970.400	8101	, 17	.17	79	250	200	26	79	78	45
23 7	11,50		972.694	.017	, 161	,16	80	250	250	50	79	78	4.5
24	1500		975.039	810.	.170	, 7	80	290	250	50	79	78	45
25	120		977.452	102]	-148	,20	81	250	249	51	79	78	45
Notes:													

													1
A	A	13585 NE \	Whitaker Way						Client:	Bulls	ege	Glass	
	20.00	Portland, (-				Fa	eility Lo	cation:	Portla	rd .01	- /	
	rnorri	Phone (503	9) 255-5050						Source:	Blast	g mal	1-7	
MON	TROSE	Fax (503) 2	255-0505	Glass Nozzle M	L easurements	•				Inlet	,		<i>[]</i>
	128/16			1.			Probe 2		(g / s) C _I		Hea	·	.511 °F
Test Meth				2 .		1309	Post-Test			Pre: Hi		·	=damaged)
	nt Testing	0061		3 -		, 76 Å	Pitot Lk I in H2O@			Lo	0 @ K	,	0 6
	<u> </u>		RC JF		ALT-011		Nozzle			OvenO5		-	Control of the Contro
Operator		Support		, Std TC (J		· 1 -2	Filter	5871		0,122,00	Hea	t Set 2	. <u>70</u> °F
Moisture	ture, Ambie		(Ta) Twb		: (ID/ºF) <u>しょん</u>		Meter Bo	x 25	dH@	1,7972		Y ,99	7/6
-	atic (Pstat)		ess., Bar (Pb) 🕉 🗓		mity Check		Meter			Pretest: (1004	cfm /5	inHg
Cyclonic 1	Flow Expec	ted ? <u>NO</u>	If yes, avg. null angle	degrees			Leak Cbe		THE RESERVE OF THE PERSON NAMED IN	Post: Q		efm <i>[</i>	inHg
Traverse	Sampling	Clock Time	Dry Gas Meter Reading	Velocity Head in H2)	Orifice Pressure in H2O	Orifice Pressure H2O	STACK	PROBE	OVEN Filter	IMPINGER. Outlet	METER Inlet/Avg.	METER Outlet	Pump Vacuum
Point Number	Time min	(24 hr)	cult	(dPs)	DESIRED	ACTUAL (dH)	°F (Ts)	"F-с. (Тр)	°F (To)	°F (Ti)	°F (Tnt-in)	°F (Tiu-out)	inHg (Pv)
	(dt)		(Vm)			(an)			Amb:	Amb:	Amb:	Amb;	
		_	D = 21			11		970	a^	E 0		<u> </u>	<u></u>
1 2	12,20		979 827	710	, [6]	16		250	250	50	78	78	5
2 3	12,30		982 145	1018	.170	,17	80	230	250.	52	78	78	5
3 4	12,40		984 .775	. ()23	,218	.22	79	250	250	53	78	78	5
4 5	12,50		987.207	1.0201	, 179	,18	139	250	250	53	78	78	5_
5 6	13.00		989 590	Mag	1 10	.17	13 4.	250	250	54	79	78	5
67	13.10		99/2.036	,0215	2:182	.18	144	250	25°	57	79	78	5
7 8	13,20		994 .422	.0208	+176	.18	144	250	250	57	78	78	5
s G	13,30		996.623	.0183	. 154	.15	148	250	259	56	79	79	5
, 10	13.40		998.998	.0210	.178	.18	1-44	250	250	56	79	78	5
10	13,50		001.201	,0175	,148	.15	143	250	250	55	77	77.	5
11 /2	14.00		003 .325	,0165	. 139	.14	143	2-50	250	56	77	77	5
12 2	14.10		005 .380	,0152	.128	.13	146	250	250	56	77	77	5
13 (14,20		007.652	.0194	.164	.16	144	250	250		72	77	5
14 (()	14.30	·	009.954	-0182	,155	16		250		58	} /	77	5
15	14,40		012.266	.0190	.163	.16	135	25Q	250	58	78	78	5
16 8	14,50		014.555	,0187	,161	.16	7		250		79	78	5
17 7	14,55,02	4,30	015.756	.0194	.167	.17	136	250	230	61	79	79	5
18												<u> </u>	
19									ļ		<u> </u>		
20		<u> </u>							ļ <u>.</u>	<u> </u>		<u> </u>	
21		ļ								-		<u> </u>	
22										-	ļ	ļ	
23										<u> </u>	<u> </u>	<u> </u>	
24								ļ			<u> </u>	<u> </u>	
24 - 25			,										

		•			rieid Dat	a Sneet							
				1			·		· · · · · · · · · · · · · · · · · · ·			A	
			Whitaker Way				1			WOUS!			
HORIZ		•	OR 97230]	Facility I		Pontico			
ENGINE	RING	Fax (503)	3) 255-5050 255-0505	Clare Nozala i	Measurements		1 .	Comple T		UNTP INCET		E 1-4	
Date	4/28/16		233-0303	. 1	итеняні сіпенія		Probe			ip <i>e</i> 1530		at Set	<u>ا</u> ۲° ۶۰ ک
Test Me				1					nspection				D=damaged)
Printer and the second	ent Testing	0061		3		- 30°	Pitot Ll				O @ 5		
Run#	ን			<u> </u>			in H2O	@in H2C)		0 @s) @ 8
Operato	r GAA	Support		_	ALT-011		Nozzle			Oven &) 5-5 Im	o. Outlet	1-40
	ture, Ambi		(Ta)		(ID/°F) <u>T L</u>		Filter	168				at Set	
Moisture		Tdb	Twb	- -	C (ID/ºF) <u> </u>	_		lox Lς"	dH@	1.797		y .9°	
			ress., Bar (Pb) 30.\ If yes, avg. null angle_		inuity Check() or 1	Mete			Pretest:	0.00 <u>6</u> D-00 L	efm f	ä
Traverse	Sampling	Clock	Dry Gas Meter	Velocity Head	Orifice Pressure	Orifice Pressure	Leak C	PROBE	OVEN	Post:		METER	∬ inHg
Point Number	Time nia	Tune (24 hr)	Reading cuft	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	°F	°F	Filter	Outlet	Inlet/Avg. °F	Outlet °F	Vacuum inHg
-,	(dt)	(, , , ,	(Vin)	. (5.5)		(dR)	(Ts) Amb:	(Tp)	(To) Amb:	(Ti)	(Tau-in)	(Tm-out)	(Pv)
	<u> </u>	1700	061 567	<u></u>			Amo:	Amb:	Amo:	Amb:	Amb:	Amb;	
1 ((12)		25 163	्ट ५५	1416	.42	151	260	258	46	86	86	2
2	ಌು		28 317	045	138~	.ሜፍ⁄	(53	しょう	252	55	88	87	٦.
3 t	30		31 847	,039	.308	ا 3 ،	157	२५९	250	'ሩ" ዓ	ኇ ٩	87	r
4	ધ૦		35.010	,041	316	৻৸৸	212	245	252	5-5-	90	প্তপ্ত	ι
₅ 5	50		38.066	. કર્યું	7301	, ३७	าเเ	249	252	50	91	88	٢
6 6	(√05		40.650	,017	া হত	1.23	196	ાકષ્ઠ	251	45	92	89	(.5
7 7	Į.10		43.562	. ७५८	270	[1]	222	১১১	245	57	43	96	ν.
8 %	(-20		46.455	1036	(ኒትን	,27	223	520	250	573	.93	90	٦
9 9	i-30		49 386	.035	، کرد	<u>., , , , , , , , , , , , , , , , , , , </u>	205	 	৩১০	51	93	90	2
10 (0	(-40		52.264	,034	.258	, L G	१०१	251	245	50	13	٩٦_	2
11 ft	1-50		55,119	.035	,૧૬૬	,ኒዓ	173	520		50	94	93	٦
12, 12	√.00		८३ ७००	,०३३	1881	เชิ	142	.520	८५७	53	৭5	93	ı
13 (L	2.10		61,382	,035	्राष्ट	. 7.1	118	しい	USU	53	94	93	1.5
14 (1	7.10		64.443	,037	118,	٠ ٦١	164		285	51	54	ኖን	しぶ
₁₅ ไပ	1-30		67.398	।৩% ১	્ર હવ	<i>-</i> {\mathcal{I},	170	520	520	इ ७	93	93	2.5
16 9	2.40		70, 205	1030	, こうし	,25	180	250	728	5-1	47	43	ኒናና
17 8	5.20		73, 184	1033	,ኒን§	્રાજ	1,7-8,	r	าช	5-2	93	93	25
18 7	५ ० ०		76,076	,03°E	, ૫64	,ጌች	163			50	45	92.	2.5
19 💪	₹-(0		79.989	. ሮኄዛ	,২৭০	,ጊዓ	158	1,50	ļ	570	14	92	ጊ ፡ 5°
20 5	3-20		82.566	1046	,7९३	.ን٩	 `		, ,	4°10	ণ(1.3 2.3
21 4	3-30		85 .9(0	9۲5	.350	.35	214	ารบ	ารอ	96	9ኒ	91	3
22 3	3-40		89.011	.,041	307	, گ /	241		ารง		91	90	5
23. L	1/50	1.950	91 818	, ወ ሜና	્રાહય	,ጊ 4	249	250	249		4/	90	3
24	4.00	1.05/1/H	95.167	,०५५	. 349	.35	₩	25U	પ્છ	54	86	88	3.5
25	g.			1		•					ŀ		

Operator Self Support Chemical State Chemical S							1							
Prince (Si3) 255-5856 Class Novale Measurements Sumple Location: Novale Continue Novale Measurements Sumple Location: Novale Continue Novale							,							
Sample Location: //OEX Trest Method S Concurrent Testing Cold Sample Location: //OEX Trest Method S Concurrent Testing Cold Sample Location: //OEX Trest Method S Concurrent Testing Cold Sample Location: //OEX Trest Method S Concurrent Testing Cold Sample Location: //OEX Trest Method S Concurrent Testing Cold Sample Location: //OEX Trest Method S Concurrent Testing Cold Sample Location: //OEX Trest Method S Concurrent Testing Cold Sample Location: //OEX Trest Method S Cold Cold Sample Location: //OEX Trest Method S Cold Cold Sample Location: //OEX Trest Method S Cold Cold Sample Location: //OEX Sample Location: //OEX Trest Method S Cold Cold Cold Sample Location: //OEX Trest Method S Cold	}-						1					•		HOPIZ
Date	•	• •					s		Teasurements	Glass Nozzle N	•	•	SING	
Test Method S	7.50 °F	it Set 3					<u> </u>		nan.		250 0305			Date
Run # 7 Support Chi							Post-Tes	3 AG		2	· · · · · · · · · · · · · · · · · · ·	-		
Comparator Soft Support Temperature, Ambient St. Tab Temperature, Ambient St. Tab Two Temperature, Ambient St. Tab Two T						Rate	Pitot Lk	E CONTRACTOR V		3		0061	ent Testing	Concurr
Temperature, Ambient F (Pa) Twb	O @ 8													Run#
Noisitre Tollo	let 1-40 ISO of	Outlet	-5(Imp	Oven 65				ુમ વ(૧૪ ૧/ <i>⇔</i> (ALT-011					
Frees, Static (Pstat) -3.1 Prees, Bar (Pb) 3.2.1 Continuity Check (8 or 1 Leak Check Press; 0.40% cfm Pross; 0.70%	99916	v s	Hea - S	/2977	പ്പത ()?			<u> </u>	(m/on のっりょり	Std TC (
Cyclonic Flow Expected AD If yes, any multangle Angeres An														
1	g inHg	cfm						, ••• +	inti check ()					
1		METER Outlet				PROBE	STACK							
1	inHg	°F	F	°F	°F			ACTUAL			cuft		nin	
1	907 (21)		Amb:					(arı)					(at)	
1	1.2	c u		un	- c7n	170	1.40	26			.7.2 .0.615		ĉi lo	
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			•		1230	250	(7+	172	, 259	.৩১ L	9+ ,991			1 (
4 4.40		87		49	750	<u> </u>	152	, 서 ಒ	.410		101.635		9.20	2 7
109 .936	<u> </u>	당구	ሄ ግ	५५	ひざい		 	, ጌ° Ն			104.818		4.33	
1			90		23*0		238	ኒን	,225	,630	107.491		4.40	4
		<u> </u>	'ধ		250	૧૬૫	<u> ૫ (૪</u>	رکن		र्डे ,	109.936		4,50	5 5
1	3	88	81	59	৴১১	วรัง	256	.15	. (88		112.376			6 L
1 5.30		ક્ષ્ય	49	53		245	૧૦૧	,30	.૨૧૧	, אלט	115 , 404		10 47 (D	7 7
1		४४	90	51	∿ ^{પળ}	250	182	, ኔ'ን	,330		118,675		ς.ιο	8 F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.5	87	91	49	ન્ડઇ	250	165		144338L	.,643 -	122.125		5.30	₉ 1
133.054 .047 .392 .39 170 250 250 47 91 89 13 12 6.10	1 1	<u>জ</u> প	91	ξ υ	250	250	160				125 . 655		5.40	₁₀ lo
13 12 6-10 136 295 139 366 038 1292 299 49 49 89 15 10 630 142 296 038 301 3 200 250 50 90 89 16 4 6-90 148 931 037 307 307 30 30 49 89 89 15 10 630 151 871 043 365 160 250 250 47 89 89 15 2 7 7-20 15 3 5 7-20 15 4 7-30 16 17 8 507 16 17 8 808 17 8 808 18 7 7-20 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5	89	91	├──	250	279	(ጌዕ	. 45	,५54	,051	129. 489		5.50	11 ((
14 (1 6·20	9 5	89	91	47		250	170	. ३ ५	.392	.047	133,054		6 00	₁₂ [1
15 (0 670	(4.5	589	91	49	250	250	w	. ንግ	.331		136.295		6.(0	13 /
16 4 6.40 145 . 149 , 038 , 301 . 3 102 250 51 90 89 17 6 6.50 148 . 431 . 037 . 307 . 31 172 250 250 49 89 89 18 7 7.00 151 . 871 . 043 . 364 . 36 /60 250 250 47 89 89 19 6 710 148 . 431 . 635 . 266 . 30 /57 250 250 47 89 89 20 5 7.20 158 547 . 043 . 385 . 39 /26 250 250 48 90 83 21 4 7-30 161 . 713 . 038 . 317 . 32 170 249 250 45 69 88 22 7 7-40 (64 . 556 . 034 . 264 . 26 214 250 250 44 87 86					<u> ૨૫૧</u>	USD	13 L						6-20	14 ((
17 \$ 6.50	ર ધ	જુવ	90		८५७	দ্য	 	.\.(1262	,০১১	142,296		670	15 (D
18 7 7-00		ક્લ	90	<u> </u>			202	ر کی	,301	·································	145, 299		6-40	16 4
19 6 210 344 424 .635 .266 .30 .157 250 256 42 89 89 20 5 2.20 158 547 .043 .385 .39 .166 .250 250 48 90 89 21 4 2.30 161.713 .678 .317 .32 170 249 250 45 69 88 22 7 2.40 [64.556 .034 .264 .26 2.4 250 250 44 87 96		<u> </u>			250		172	-31		,०५२	148 . 471		6.50	
20 5 7-20 158547 1043 1385 39 124 250 250 48 90 87 21 4 7-30 161.713 1032 1317 132 170 249 250 45 69 88 22 7 7-40 164.556 1034 1264 126 214 250 250 44 87 86					_		 ` 	.36					7-00	18 7
21 4 7-50 161.713 ,078 ,317 .32 170 249 250 45 69 88 22 7 7-40 (69.556 ,034 ,264 ,26 214 250 250 44 87 86	7 5-	89	<u> </u>				157	- 'Ļ'	, ጊናር	,635	40, 96, 431		プロ	19 L
22 7 7-40 (69.556 ,034 ,264 ,26 214 250 250 44 87 86		1	 	_			+	.39	.385	1043			7.20	20 5
22) 7 1			ļ				+			,০)খ			7.32	21
1 . 1250 162 637 mg 296 30 120 hon been let let 182		 		44	~ 5 [™]	_	ļ <u> </u>			· · · · · ·			7.40	22
		87	જ દ	46	156	rso		.°\0 <u>.</u>	,746	, ত্যপ্ত	167.632		7.50	23 1
24 1 4.00 1.30 170 .445 .033 .254 .25 214 250 250 47 87 86	5	86	87	47	230	250	1214	,25	. 254	, 033	170 .445	1.30	4 00	24 \
25		<u></u>								and the second s			one of the second secon	25

Notes:
B\Shared files\Field\Data Sheets\Melhod 5\Melhod 5_v2.pdf

Leak check for At Pause from 170.445 Hohazon ENGINEERING 16-5702 Leak check good

\$-: <u></u>				•	Licia Dutt								
	io.	13585 NE	Whitalær Way						Client:	Pv.//	(Di B	Colas	·S
3 /M	(7)		OR 97230] 1	Facility I	ocation:	Ball Portly Blast	1696 11.01	?	
HORI		,	3) 255-5050	G1 N 1 1					Source:	Blast	Farm	100	7-7
Date	4/29	Fax (503)	255-0505	Glass Nozzie i 1	Measurements		Probe 7		ocation: (ĝ/s) C			at Set 2	右の °F
Test Me	- (- / - / / / / / / / / / / / / / / / 	<u> </u>		2		300			nspection				D=damaged)
Concurr	ent Testing	906	ľ	3		,309	Pitot Lk		•	Pre: Hi		Post	
Run #	3							@in H2C)	Lo	(@T		0 @8
Operato		Support		Dutanci	<u>ALT-011</u>	81	Nozzle 5		A53	Oven()			
Moisture	ature, Ambi e 3.	Tdb -	(Ta) - Twb		ID/°F) <u>J.</u> C (ID/°F) <u>l.~</u>		Filter Meter B	1587 10x 25	//ጎ _gqH@	1.792		at Set 2 Y , 4	
	tatic (Pstat)		ress., Bar (Pb) 30,)	•	nuity Check /	0 '	Mete			Pretest:		cfm /	
			_If yes, avg. null angle	degrees		·	Leak Cl			v	,002	efm	g inHg
Traverso Point	Sampling Time	Clock Time	Dry Gus Meter Reading	Velocity Head in H2)	Orifica Pressure in H2O	Orifice Pressure H2O	STACK.	PROBE	OVEN Filter	IMPINGER. Outlet	Inlet/Avg.	METER. Outlet	Pump Vacuum
Number	min (dt)	(24 hr)	cuft (Vm)	(dPs)	DESIRED	ACTUAL (dH)	°F (Ts)	Tp)	°F (To)	°F (Ti)	°F (Tm-in)	°F (Tm-out)	inHg (Pv)
			170 519				Amb:	Amb:	Amb:	Amb:	Amb:	Amb:	
1 1	8:10	139	173.420.	, Q 360	,303	,3 <i>0</i>	154	266	250	50	84	85	4,5
2 2	8720		176 D80	.0343	.288	,29	154	250	255	30	84	85	4,5
3 3	8.30		178.940	,0315	, 267	,27	149	250	29)	49	84	85	4,5
4 H	8.49		181 .191	.02/0	.1768	.18	153	250	250	49	86	85	5
5 K	8,50		183 3(0	O505	./62	.16	183	250	250	524	86	85	40
6 ()	900		185 .649	.0205	168	17	167	250	250	54	85	85	4
7 7	9,10		187.820	0 199	12231	16 2 C	168	250	250	51	85	85	4,5
8 K	9,20		18,4.984	.()190	155	16 40	171	250	249	50	85	85	4,7
9 C1	9,30		192.147	0180	,147	!5	141	250	150	\$3 _.	85	85	45
10 [()	9,40		194.118	.0110	132	[3	166	250	250	55	84	84	4.5
11	9.50		146.906	.0151	.121	.12	182	250	250	57	84	85	45
12/2	1000		147.486	1.9177	143	./4	177	250	250	57	84	84	4,5
13 12	10.18		199.818	.0144	.116	.12	176	210	250	<u>47.</u>	85	85	4,5
14 }	10,20		201.628	10 45	.118	,12	176		250	57	85	85	4,5
15 10	10.30		203 . 664	10/67	. 135	.14		250	2510	56		84	4,5
16	10,40	·	205 545	.01.45	. 1/7	.12	178	250	250	54	83	<i>514</i>	45
17 8	10,50		207 417	,0156	. 122	.12	196			53	83	84	4,3
18	11,90		209.270	10/49	1122	112	170		250	<i>5</i> 3		84	4,5
19 6	11.10		2/1.288	·0.16p	134	.14	165		25 <u>0</u>	<u> 53</u>	73	84	4,5
20 5	1620	·	213.242	10156	128	:13	167	250	240	53		84	48
21 4	11.30		215 043	19140	,115	,12	167	250	250	54	84	84	4,5
22 3	11,40		216.814	.0138	.	,))	183	250	250	54	83	84	4,5
23 2	11,50	•	218 775	, 01 GU	.135	,14		240	250	54.	83	84	4.5
24	150b		220.656	0/48	.123	.12	162	250	250	55	83	84	6
25	2/20		222 . 459	,0127	11 F5/12	, ,]]	156	250	450	57	83	84	5
Notes: B:\Shared fil	les/Field/Data	} Sheets\Method	d 5\Method 5_v2.pdf		, 10 6		`						
							110	י בו חי	NI ENIC	INEE		0 570	_

							,						
		13585 NE	Whitaker Wây		-	=			Client:	39/	150 apr	Class	
	\(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	Portland,					F	acility L	ocation:	Portla	100 mg	? -	
HORIZ ENGINEE		Phone (503	3) 255-5050				1		Source:	Blast	Fund	ce T	-7
FROME	ue.	Fax (503)	255-0505	Głass Nozzle I	Measurements		S	ample L	ocation:	In le	+		
Date	4/29/16			1			Probe 2	-4	(g/s) C	p : 836	3 He	at Set 🥻	2 <i>50</i> °F
Test Met	hod	ī .		. 2		200	Post-Tes	t Pitot I	spection)=damaged)
Concurr	ent Testing	00 61		3		,309	Pitot Lk	Rate		Pre: Hi	0@5	Post (0 @ 9
Run#	3					·	in H2 ,O@	din H2O		Lo	0 @5	1	Q @ &
Operator	· UW	Support	KC CH		ALT-011		Nozzle	512		Oven Og-	- 行)Im _]	p. Outlet	1-41)
Tempera	ture, Ambie	ent \$/	(Ta)		1D/°F) <u>"JL</u>	81	Filter '	1587	13				2 <i>50</i> °F
Moisture	3	Tdb	- Twb -	Stack TO	C (ID/°F) <u>2 -</u>	4 81	Meter B	ox 25°		1,7927		Y .99	
			ess., Bar (Pb) 30,/	• ,	nuity Check 🤇	Por t	Mete	r		Pretest:		cfm 🤟	
			If yes, avg. null angle_	degrees			Leak Ch			Post: (),			∮ inHg
Traverse Point	Sampling Time	Clock Time	Dry Gas Meter Rending	Velocity Head iu H2)	Orifice Pressure in H2O	Orifice Pressure H2O	STACK	PROBE	OVEN Filter	IMPINGER Outlet	METER Inlei/Avg.	METER. Outlet	Pump Vacuum
Number	min	(24 hr)	cufi	(dPs)	DESIRED	ACTUAL	°F (Ts)	°F	°F (To)	°F (Ti)	°F (Tm-in)	°F (Tm-out)	inHg (Pv)
	(dt)		(Vm)			(dH)	Amb;	(Tp) Amb:	Amb:	Amb;	Amb:	Amb:	(21)
			,				<u></u>			- 1			
1 2	1220		224.402	0141	,121	,12	1162	250	V50	56	73	.83	5
2 3	12.30		2 26.308	· 0] 44	.119	.12	161	250	250	56	#3	83	5
3 ^L	12,40		228.209	10146	,121	,12	163	250	250	58	83	83	5
4 5	12.50	-	230 .101	.0147	,122	12	162	250	250	\$6	82	83	5
5 6	13,00		232 .080	,0153	,127	.13	161	250	250	59	84	83	5
6 7	13, 10		233.906	,0127	-105;	./1	166	250	250	60	83	83	5
₇ δ	13,20		235.570	, 0121	, 3 4 Kg	12,10	169	250	250	62	83	84	5
s G	13,30		237 367	3510,	, 144	14	169	250	250	64	84	84	5
, (1)	13,40		239 . 469	0149	.123	1/2	166	250	250	62	84	84	5
10	13,50		241 .307	.0134	111	11	163	240	250	58	85	85	5
ո 12	14.00	,	243 . 144	.9136	1084	, 11	189	200	250	57	85	35	5
12 12	14.10		245 066	.0148	1124	,12	158	250	250	58	86	86	5
13 / /	14,20		247.172	,0/31	.132	.13	134	250	250	58	86	86	ĵ
14 ()	14.30		249.019		. 116	./2	143		250	58	86	86	5
15 G	14,40		250.886	,0133	, ()	, []	166	250	250	59	86.	Fl	5
16	1440 N	4.00	251.070	,0126	,O 988	.10	20 1	299	230	59	86	86	3
17	1440%	129	•			·	<u> </u>	<u> </u>		ļ		ļ	
18							ļ						
19												ļ	
20		. ,					<u> </u>						
21													
22									<u> </u>			<u></u>	
23									<u> </u>			<u> </u>	<u> </u>
24		,	•								-		

			105053	YE/L24. L XX7					· · · · ·	C11: 4	<u>න </u>				1
		M		Whitaker Way OR 97230				F	acility L	Client: ocation:	L. WW		J		
		, ,	•	3) 255-5050				r	acatty ki	Sonree;	1000	15 TY	- 7_		
	MON ALR QUAL	TROSE	Fax (503)	•	Glass Nozzle	Measurements		S	ample,L	ocation:	500	F	P		
	Date A	1/261	le] 1			Probe 3	-6	(g/s) C	p , 84	/ZHe	at Set 🌊	250 °F	!
	Test Met				2	_ 		Post-Tes)=damaged)	7
		ent Testing	VES	>	3	43135	ı	Pitot Lk			Pre: Hi				-
	Run# Operator	100	Support	, propagation	L	ALT-011		in H2O@				ტ <i>@ (დ</i> ვ <i>ყფ</i> (mi		ン@5 エ-40	ıι
		ture, Ambie		(Ta)	Std TC	(ID/°F)	2 100	Filter		199	O TOME		at Set 2	·	<u>-</u>
	Moisture	3/2		30 Twb /20	Stack T	C (ID/°F)	⊖.	Meter Be	x 3	dH@ [.888		Y.96	1150	
		tatic (Pstat) Flow Expec		ress., Bar (Pb) 29 4 _If yes, avg. null angle_	Conti	nuity Check) or ↓	Meter		<u>.</u> 0-	Pretest: 6		efm e	/6′′ inHg / (″ inHe	4
	Traverse	Samplin <u>e</u>	Clock	Dry Gas Meter	Velocity Head	Orifice Pressure	Orifice Pressure	STACK	PROBE	OVEN	IMPINGER	METER	METER	Pump	4
	Point Number	Time min	Time (24 hr)	Rending cuft	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	°F	°F	Filter °F	Outlet °F	Inlet/Avg. °F	Outlet "F	Vacuum înHg	
		(dt)	13 L	G50 104	ا چور ا	1762	(dH) - 1 · 2	(Ts) Amb:	(Tp)	(To) Angle 3	Ambra-/	(Tm-in)	(Tm-out)	(Pv)	
	,	10	5.3	956295	14	2 2636	2.2	120	<u>みらひ</u> ク<~/	263	33	77	67	4	1
		20		914 445	14	2,2636	2.3	123	957 957	246	60	74	69	4	1
	2	30		973 706	<u> </u>	17785	1.8	150	25%	256	51	76	74	4	1
	3	40		98011	* 1	1/2/19	111.	1/ /	クシー	14/1	5%	70	69	4	1
	4	10		907925	00	111000	1.21	1160	<u>107</u> 907	277 267	5/2	79	7/2	3.5	-
į	5		******	107.40	09	11953	1/7	166	200	<u> </u>	.)0	12 68	10	3	╣ .
X	6	60 70		10000 P	009	97M	<u> </u>	178	<u>003</u>	273 12121	53	64	63	3	-
	7			1000.41	000	0,00	001	100	241 000	文77 945	59	64	,		
	8	80	***************************************	1005.900	605	00001		114	750 ~~	200	51		63	2.5	-
	9	90		1010.911	005	19084	-81	177	200 000	297	26	12	62	2	
	10	100		1015 875	05	,8084 0,04	181	11/4	254	265 700	54	63	4		-
0	11	110		1020 805	302	.8084	<u>,80</u>	152	250	2 TO	56	63	62	2	P
Z	12	120		1625.63	005	,8084	· <u>80</u>	164	20	258	53	021	62	2	4/2
	12	130		1030 475	a05	18084	<u>.81</u>	175	250	255	シ ス	64	61	2	-
	14	140		1035.310	005	18084	<u>.81</u>	184		1		66	62	7_	-
	10	150		1040.200		.8084	<u>.81</u>	186			54	66	62	2	-
-el	16	160		1045.695	005	.8684	-81		2SZ		54	65	62	2_	1
4-	178	170		1049.985	005	28084	181		2 <i>5</i> 3		52	66	61	2	-
3	18 7	180		1054.915	006	09781	097	1	249		<u>51</u>	66	62	3	
	19 6	190			00.7	1,13,8			25 <u>2</u>	250	51	66	&Z	3	-
	20-5	200		1066100	007	1,1318	1, 1			255	53	67	Up	3	
	14	210		1071.740	607	1,1318	1.1			246	52	18	62	3]
	223	220		1077.365	107	1.14	1.1	176	255	246	53	68	65	3	
	232	230	•	1082 985	010	1.6367	1.6		255		53	68	64	3	1
4	24	240		1089 975	010	1,6367	1,6		256		51	40	62	3	
	25	250		1096,995	010	1.6361	1.6	148			52	6	64	3	
	Notes:		. B	A	28/00 10	15-15					,				-

Notes: Pausco & 69.17 in Run PSC 18:50
B.Shared files/Field/Data Sheets/Method 5/Method 5 PDX-v1,pdf

					¥	rield Data	t billoot	the management of the contract					3044	.7
	À	À	13585 NE	Whitaker Way				l .	Client:	Rul	19.64	C.C.		1
			Portland,	•	48	2.45		Facilit	y Location:		flue	tor		
	MON	TROSE		3) 255-5050	100	136		*****		out		<u>4-7</u>	,	
	AN QUAU	TV SERVICES	Fax (503)	255-0505	1	Measurements		<u> </u>	e Location:				F A 05]
	Date 4	120	ODE	3 A. (=	1 2			Probe 3 — Post-Test Pite					°F ⊝=damaged)	_
		ent Testing	Ba		3	7735	<u>-</u>	Pitot Lk Rate		Pre: Hi				1
	Run#	۲-۱ ً	1.2			_ *_11		in H2O@in H			001		2 @ン7	
	Operator	Pr	Support			ALT-011	200			Oven 62				-
	Tempera Moisture	ture, Ambi	ent Tdb	(Ta) — 130 Twb 130		ID/°F) <u>6 8</u> C (ID/°F) <u>6</u>		Filter / A	<u>メガイシ</u> dH@/	8 88 47		at Set 2 Y 199	<u>50°F</u> 150	1
		atic (Pstat)	<i>o</i>	ess., Bar (Pb) 29, 9		nuity Check/↑	de.	Meter	une j	Pretest:	A	cfm 1	inHe	
		`		If yes, avg. null angle_	degrees	<u> </u>		Leak Check		Post: , O		Efm 1	111 inHg	
	Traverse Point	Sampling Time	Clock Time	Dry Gas Meter Reading	Velocity Head in H2)	Orifice Pressure in H2O	Orifice Pressure H2O	STACK PRO	Filter	IMPINGER Outlet	Inlet/Avg.	METER Outlet	Pump Vacuum	
	Number	min (dt)	(24 hr)	cuft (Vm) O	JW (dPs)	DESIRED	ACTUAL (dH)	°F °F (Ts) (Tg) (To)	(Ti)	°F (Tm-in)	°F (Tin-out)	inHg (Pv)	
				1104.00 M				Amb: Amb:	Amb;	Amb;	Amb:	Amb:		
	2	260	22:00	1000 PEG	ell	17938	1.8	138 25	4256	53	67	63	35	
	23	270		1111.350	0/2	1,9568	1,9	136 25	5 244	52	69	64	4	
	,4	280		1118 945	011	17938	1.8	137 24	7 252	148	76	64	4	
	₄ 5	290		1126 370	010	1,6367	1.6	158 25	7 250	47	73	66	4	
5	56	300	*	1133.405	800	1,3046	1.3	170 25	<u> </u>	44	71	65	3	
	67	310		1139,780	-02	23261	,33	159 25	4 254	50	69	66		
	7 8	320		1142.830	007	1,1415	1,1	170 25	3 248	50	67	45	×31	Hzellib
	8	3 3 0		1148.400	606	9784	892	168 24	8 261	49	69	66	3	
	,10	340	. ,,	1153.885	000	,9784	"98	155 24	7254	48	69	65	3	
	10	350		1159.345	F0=	1,1415	1.1	147 25	4 260	47	68	65	3	_
6	11/2	360		1165.070	006	,9784	.98	143 25	228	47	68	65	3	
	, 12	370		11707180	e06	.9784	.98	152 25	7 250	47	68	45	3	
	13	380	:	1176,235	.05	8454	e81	173 25		49	68	64	3	
	14 1 D	390		1181.190	005		, 81	179 25	2/24	50	68	64	3	
17	15 7	400	00:24	1186.100	006	,9784	,98	18Z 25	264	50	68	64	3	
	168	410		1191.530	06	£9784	.98	173 83	D 244	49	69	65	3	
7	ı, 7	420		1196.985	60°	1,4616	1,4	154 25	1263	49	72	Up	4	
	186	430		1203,570	009	1.4676	1.4	148 25	0 243	49	73	46	3	
	195	440		1210,180	009	1,4676	1,4	136 25	726Z	49	73	(8)	3	
	20 4	450		1216079	@00	p9784	.9B	120 24	Z 249	49	74	68	3	
	₂₁ 3	460		1222 855	05	£8154	£81	115 25	6264	50	74	69	3	
3	22 D	470		1227.790		* 6523	265	114 25	3 243	50	73	69	3	-
3	23	480	1	1232,113	,09	1.47	1.5	127 24	15 250	50	72	71	3	
iA	24 J	490,	850 B	238.7.	.08	1.30	1.3	164 20	19 249	49	76	74	3	
158	25 3	500		184501	,07	1.14	1-/	151 29	3354	49	15	74	3	-:
	Notes:		*		msed h	so flow	. 21ma	@ 67 V	shew c	AME	brak	<u>. </u>		+
	B:\Shared fi	les\Field\Data	Sheets\Metho	300617	RESLAND	C22:4	4 TIM	L JULIHOUR	EON EN	MEE	RING	16-57)2	٠.,
			1	IND PRINT	Cow	t. to Ru	N (2) (1)	2.02 UNHIMORE	into Ru	212	0+	71		
				ı			,	יוני	Cherry 12	. 1 1				ī

						rieid Dat	a Sneet					
	Â.	.A.	13585 NE	Whitaker Way		6			Client	Bullse	100	 1
		MIN		OR 97230	1 2	E CANE	•	Facility	Location:	Portly	TOX	
	MON	TROSE	Phone (50	03) 255-5050	7	, Ha,				Portland utlet		
	Date L	1/27/1	FAX (SU3)	255-0505	Glass Nozzle	Measurements	•	1	Location:	0270		
	Test Me		01	PRS	2	. 45	= ' ′	Probe 3 Post-Test Pitot	(g/s) Cp Inspection	18378 I		250°F
		ent Testing	(Rugg] з	.3 Z35	-	Pitot Lk Rate	F	re: Hi O @	Q Post C	
	Run# Operato	<u> </u>	Suppor	1-1		AT TO 011		in H2O@in H2		L ₀ Ø		7 @ 7
		ture, Ambi		(Ta) —	- Std TC	<u>ALT-011</u> (ID/°F) (65 PT	Nozzle 5 Filter 159	<u>635 (</u> 3757)ven(Q l <i>3</i> 49[1	mp. Outlet Icat Set⊋	
	Moistur	45.77	/ Tdb	30 Twb/20	-	C (ID/°F)	55	Meter Box 3		8884	Y.99	
	Press., S	tatic (Pstat)	eted? A	ress., Bar (Pb) <i>90.</i> _If yes, avg. null angle_	Cont degrees	inuity Check	or ↓	Meter	<u> </u>	retest: 0.001	cfm '	∂0″inHg
	Тгдусгае	Sampling	Clock	Dry Gas Meter	Velocity Head	Orifice Pressure	Orifice Pressure	Leak Check STACK PROBI		ost: 00200		inHg Pump
	Point Number	Time min	Time (24 hr)	Reading cuft	in H2) (dPs)	in H20 DESIRED	H2O ACTUAL	°F °F	Filter °F	Outlet Inlet/Av		Vacuum inHg
		(dt)	1,2	1251 216			(d11)	(Ts) (Fp) Arab: Amb:	(To) Amb: Ai	(Ti) (Tm-in nb: Amb:	(Tm-out) Amb:	(Pv)
		510	1000	117 <1211	07	1.19	13	(VI 00	10 167	10 00		
	1		187	101016	07	1	1.2	176 05	100	49 75	 	3
	2	520	5	1668 601	.06	1.02	1.0	143 856	257	49 75		3
-70	3	530	6	1868 034	.05	.86	.86	138 75	1250	49 74	69	3
9	4	540	1	1272988	.05	.86	.86	137 25	1256	50 74	71	3
	5	550	8	1277.991	,05	.86	.86	125 25	1255	5/ 73	71	3
	6	560	9	1283 816	,06	1.02	1.0	119 24	2-42	18 73	69	3
	7	570	lo	1288324	.06	1.02	1.0	115 25	3251	49 74	69	3
	8	580	11	1294320	.05	88	.881	12-251	244	49 12	77	2
	9	590	12	1299 557	_05	.88	. 88	13/025	251	40 72	69	2
10	10	600		1304/67	,04	.71	71	125 76	246	19 72	68	2
	11	610	11	1309.342	,05	-88	.88	114 251	247	19 72	72	2
. :	12	620	10	1314602	.05	.88	.28	126 251	251	4972	71	2
	13	630	9	1314.602	,04	.71	71	123 752	257	49 72	71	2
	14	640	8	1319.198	,05	.88	.88	124 250	254	49 71	69	2
v	15	650	9	1324.612	.05	.88	.88	124 253		49 71	67	2
11	16	666	6	1330.618	07	124	1.2	140 25		19 71	70	2
	17	670	5	1336.152	07	1.24	1.2	143 250	- 4	1972	71	2
	18	680	4	1343.246	08	1.41	1-4	135 291	255 1	19 72	7/	
	19	670	-3	1399.143	.07	1.24	1.2	133 251	 	5172	7/	3
	20	700	8		.08	1.41	1.4	132 055		19 72	71	3
	21	710	ł	1361.732	.07	1-24	1.2	140 257	244 6	1973	72	3
12	22	720		1367.990	.08	1.41	1.4	136 753	 	1972	68	3
	23	730	2	1374.517	.08	1.41	1.4	132 254	ļ	19 71	60	3
	24	740	3	1350 499	07	1.24	1.2			19 73	72	3
	25	750	4	1386 166	.06	1.06	1.1	130 251			67	3
	Notes:				<u>.</u>		<u> </u>	- /	<u> </u>	7 1 (<u> </u>	

B:\Shared files\Field\Data Sheets\Method 5\Method 5_PDX-v1.pdf

		e en www. vener acces	~ ~~ ~					1				. 7			า
	A			Whitaker Way	1.5	50 , E 1	_		acility L	Client:	Ry al	llser	e e		
	(Y	Portland,	OR 97230 3) 255-5050	(つ)	Oper		j *	асшіу Д	ocation: Source:		the	COOL		
	MON	TROSE		•	Glass Nozzle I	Measurements		s	ample L		out	et	727		
		- 6 6 1	6		1						р . 83		at Set 2	<i>50</i> °F	, 11
	Test Met		DI	EQ 5	2		•	Post-Tes						=damaged)	_
	Concurr	ent Testing		425	3	373	5	Pitot Lk	Rate		Pre: Hi		Post () @6]
	Run#	2-1						in H2O@			Lo			2 @' Y	ļ
	Operator		Support		Switter	ALT-011 ID/°F)(o_	5 PT	Nozzle	5-	635 875	Oven621		p. Outlet at Set 2		
	Moisture	ture, Ambi	Tdb	(Ta) — 1 30 Twb 12		(ID/°F) <u>(</u> (7	Filter Meter Be	<u>15</u>	<u>クィフ</u> dH@	1.888		Y,745		150
		atic (Pstat)		ress., Bar (Pb) 30.1		nuity Check	-	Meter			Pretest://		cfm (6 inHg	4
			cted ? AZ	If yes, avg. null angle_	degrees	, (,	Leak Ch	eck			004	cfm 1	/ " inHg	
	Traverse Point	Sampling Time	Clock Time	Dry Gus Meter Reading	Velocity Head in H2)	Orifice Pressure in H2O	. Orifice Pressure H2O	STACK	PROBE	OVEN Filter	IMPINGER Outlet	METER Inlet/Avg.	METER Outlet	Pump Vacuum	Ī
	Number	rain (dt)	(24 hr)	cuft (Vm)	(dPs)	DESIRED	ACTUAL (dH)	°F (Ts)	°F (Tp)	°F (To)	°F (Ti)	°F (Tm-in)	"F (Tm-out)	inHg (Pv)	
								Amb:	Amh:	Amb:	Antb:	Amb:	Amb:		
	-	740		1791 961	nl-	1 0/-	1 1	122	161	200	50	71	フヘ	2	1
	1	760	5	1011.001	.06	1.06	1.1	100	01	255		100	70	3	4
	2	170	0	1397.261	.05	.88	.88	133	83	250	51	12	71	3	
- 13	3	780	7	1402 671	-06	1.06	1./	132	251	243	53	12	68	3	
		790	9	1407789	.05	.88	.88	130	249	257	7-2	73	71	3	
	4	800	a	(413001	.05	.88	9,4	121	162	242	27	12	67	3	1
	5	810	1_	1417 024		.71	. 11	101	254	12	57		67		ļ
	6		10	1402 1141	.04	· ·		11/	001	201	50	72		3	
	7	820	11	1475.141	105	.88	. 88	115	001	744 C	48	11	68	3	
	8	830	12	1928.999	.05	.88	,88	119	875	760	5/	75	70	2	
14	9	840		1433.039	.09	.71	.71	117	298	249	51	14	71	2	
	10	850	_//	1438-667	.05	.88	.88	120	257	757	51	13	71	2	
	11	860	10	1443.781	,05	. 48	.88	130	752	492	49	74	73	3	
	12	870	9	1449.469	.06	1.06	1-1	131	757	249	49	74	73	3_	
	13	880	8	1455.301	.06	1.06). [129	753	253	50	74	73	3	
	14	890	7	1461 174	.06	1.08	1.	128	251	247	50	75	69	3	
15	15	900	6	1466.412	,05	.88	.88	128	250	256	50	75	74	3 3	
	16	910	5	1472.571	.07	1.24	1.8	128	249	246	50	76	75	3	
i. s	17	920	4	148 555	.07	1.24	1.2	133	250	255	50	77	74	3	
W	18	930	3	1484.313	.06	B6 10;	1.033	142	250	247	51	76	75	3	
7930	19	940	2	1489 340	.08	1.39	1.4	133	253	258	51	77	76	3	
197	20	950	1			,									
16	21	960	•			_									
7		970													
38 nin. test	23	980		<u> </u>											
nir.	24	990													
105	<u> </u>			•											
	Notes:							I	L			<u> </u>			i

Notes:

. *						riela Data	a Sheet							
	A .	13585 NE	Whitaker	· Way						Client:	Bule	EYE		
		Portland,] 1	Facility I	ocation:	Pos	LHA)	vel_	
ΜŌ	NTROSE	Phone (50 Fax (503)	,	50	Glass Nozzle	Measurements			Samnle I	:Source :ocation	Ro	$^{\sim}$	1-7	
Date	41271	16	#35 05 00		1			1			p 83		at Set 2	50°F
Test M	ethod Of) EQ 5	5		2		<u>-</u> -	Post-Te	st Pitot I	nspection	NC	(NC≒nc	change, I	D=damaged)
	rrent Testing	Y55	•		3	-3735	-	Pitot Ll			Pre: Hi		Post (
Run #		Support	-11		1	ALT-011		Nozzle	@in H20 5 /~ 3 :	-63		(34 4 m)	7 C n. Outlet	<u>/ @ 75</u> T-41
	rature, Ambi		(Ta)		Std TC	(ID/°F) 65	Po		58				at Set 🎜	? ඊට °F
Moistu		Tdb		Twb		C (ID/°F) & _		Meter I		dH@ ∫	<u>.888</u>			9150
	Static (Pstat) ic Flow Expe			(Pb) 30, g. null angle	Cont. degrees	inuity Check		Mete Leak Ci	r 1eck ≶ €	p(Pretest:	<u> </u>		ねか inHg 1 ** inHg
Travers Point		Clock	Dry	Gas Meter	Velocity Head in H2)	Orifice Pressure in H2O	Orifice Pressure H2O	STACK	PROBE	OVEN Filter	IMPINGER. Outlet	METER Inlet/Ayg.	METER Outlet	Pump
Numbe		Time (24 lir)	 '	Reading cuft (Vm)	(dPs)	DESIRED	ACTUAL (dH)	°F (Ts)	°F (Tp)	°F (To)	°F (Ti)	"F (Tm-in)	°F (Tm-out)	Vacuum inHg (Pv)
	(di)	17:30	489	715	-03	.5247	•5 ²	771	252	242	25 7	^ * 71	70	
1	ID	Ü	493	3.605	-03	.5247	.57	133	255	2,28	55	73	7/	1
2	20		49	7.465	-03	-5247	,52	142	250	269	58	75	71	7
3	30		501	1345	-03	,5247	.s3	156	252	244	59	79	73	1
4	40		505	<u>5.280</u>	.04	26996	.70	164	252	261	59	දිර	75	2_
5	50			1.865		5247	.52	165	257	251	60	86	76	2
6	60	ļ		£825	.04	.6996	.70	143	253	246	59	78	76	2
7	70		518	.430	± 06	1.0494	1.0	151	252	258	59	79	76	2_
8	80		523	<u>. 980</u>	<i>عا</i> ن و	1.0494	1.0	168	257	243	58	79	75	2
9	90	:	529	.580	.08	1.3972	1.4	177	255	257	57	80	79	3
10	100		536	200	<u>=08</u>	1.3992	1,4	181	248	247	57	80	75	3
11 .	110		<u>542</u>	<u>. 795</u>	009	1.574	1.5	178	258	258	56	79	75	3
12	120		549	.640	.09	1.5741	1.5	155	247	242	55	78	75	3
₽2.	130		550		-09	1.5741	1.56	160	255	259	55	79	76	3
11/1	140			<u>.505.</u>	. 1	1.3992		177				79	74	3
110	150			205	1	1.3992		•			52		75	3
16	160			<u>.880</u>	1	1.2243		1	•		53	_		3
<u> </u>	170			1900						260		77	73	3
187	180			5, 485	1 .	2402	284	171		1	<u>53</u>		72	
1,6	190		-	3,610	1	.6722				264		76	73	2
205	200	,			663	,5300				243		75	71	2_
214	210			2095	1	,5163					54		73	ړ
223	220			7.950	1	•3329	, 33	}		246	_	73	70	<u> </u>
232	230				002	.3329	,33			258		7/	70	
24	240				e03	,4994		1		256				<u> </u>
25	250		615	.730	104	16765	,68	165	252	241	52	72	69	l

Notes:

SPANIST.			•		•	riem Data	Sheer		
*	À	À	13585 NE	Whitaker Way	کہے نہ	-		Client: Bullseyr	
		MIN		OR 97230	560	`@€\		Facility Location: Portland	<u> </u>
	MON	TROSE	Phone (503)	3) 255-5050 255-0505	Glass Nozzle	Measurements		Source: Out Et 1 - Sample Location: Aut 197	
	Date	THE SERVICES	4/2		1			Probe 3 -6 (g/s) Cp , 8378 Heat S	iet 250 °F
	Test Met		0121	* GE /	2	7 526	_	Post-Test Pitot Inspection AC (NC-no cha	
-	Concurr Run#	ent Testing	184	agg	3	<u>. 3735</u>		Pitot Lk Rate Pre: Hi Q@ 5 Po In H2O@in H2O Lo Q@ 7	ost 8 @ 3 PT
	Operator	A	Support	σH	_	ALT-011		Nozzle 5 -635 Oven621349Imp. C	
		ture, Ambie		(Ta) — Twb 22	Std TC ((ID/°F) <u>65</u> C (ID/°F) 6	25		set 250 °F 991 5 0
	Moisture Press., St	tatic (Pstat)	Tdb	ress., Bar (Pb) 37	- Other I	nuity Check (Meter Box 3 dH@ 1,888 4 Y Meter Pretest: 0 2 cfi	* A 17
Control of the Contro	Cyclonic	Flow Expec	cted ? <u>A</u>	If yes, avg. null angle_	degrees			Leak Check Post: . 20 2 cfr	n <u> </u>
april /	Traverse Point	Sampling Time	Clock Time	Dry Gas Meter Reading	Velocity Head in H2) (dPs)	Orifice Pressure in H2O DESIRED	Orifice Pressure H2O ACTUAL		ETER Pump Outlet Vacuum °F inHg
y	Number	min (dt)	(24 hr)	cuft (Vm)	(ars)		(dH)		m-out) (Pv)
The second secon		_							
	ا ۾	260		620.265	•03	-5182	152		9 1
	2 3	270		624,195	003	055bb	.56		8 !
ee.	3 4	280		428,230	e03	,5566	.56	140 255 265 52 71 6	,8 (
- Landon	4 5	290		632.276	004	67636	276	127 253 241 51 71 6	82
5	5 6	300		637.040	#06	1,0915	1.0		8 2
***	[6 7	310		642.585	008	1,4287	lo4	171 249 242 51 73 6	83
, ,	7 8	320		649,170	005	.8837	,88	173 253 253 51 71 6	82
	8 9	330		654.380	005	28837	.88	172252 24057 71 6	92
	, 10	340		659.575	009	1.6479	1-6		8 3
	10	350		666.620	009	1.6479	1.6		8 3
6	11 12	360		673.725	208	1,4692	1.4	142 247 259 51 72 6	.8 3
1 :	12	370		680,350	009	1,6922	1.7	136 256 241 51 72 6	.8 4
5	13	380		687.635		1.7094	1,7	,	8 3
		390		694.930	-			155 250 245 5-1 736	
ş ·		400		702,000	608	1,4275	1,4	168 256 260 51 71 6	373
	16	410		708.645	006	1.0555	lil	177 255 243 52 716	,62
7	17	420	:	714.0470	00 Cp	1.0555	1.1	177 250 259 51 71 6	72
	18 6	430		720,170	003	,5402	.54	160 252 246 52 716	6 1
Š	19 5	440		724.145		15536	ı 55		6 1
• Very new	20	450		728,180	·02	3772	,37		6 /
,mK	21 3	460		731385	002	13952	-39	105 251 250 53 68 6	16 1
-	22	470		734,730	1	,3952	39		061
48	23	480		737.974	.08		1.4		ob l
tact	24	490		744 970	.08	1.42	1-4	· [1 0 1 0 1 1 1 1 1 1	,4 1
148	25 2	500	<u></u>	761,485	.67	1.24	1.2	174 251 258 51 70 6	24 1

Notes:

Notes:

Notes:

Notes:

Notes:

Regg- Flow drop to -02 Httl Kerp Running @ 1.4

B:\Shared files\Field\Data Sheets\Method 5\Method 5\PDX-v1.pdf Back up @ 319 - 334 Flow HURIEDNIERIGNEERING 16-5702

Cowth to Run @ BB

2 of 4

					•									
	A	A	13585 NE	Whitaker Way					· · · · ·	Client:	Bull	seye	- 61	2 f c
			Portland,	OR 97230	5	Er VE J) (Facility L		Bull		OR	~3
	MON	TROSE	•	3) 255-5050		Cher					outli	·,	-	
	ABC ODAT	FIV SERVICES	Fax (503)	255-0505		Measurements		Ļ	Sample L			7127		200 00
	Date Test Me	(/28/1 thod		SEQ E	1 2		•		st Pitot I		<u>₽∙€37</u> • <i>NC</i>		at Set o)=damaged)
		ent Testing		1465	3	. 3735	;	Pitot Ll						9 @ 453
	Run#	2					•	in H2O(@in H2O	•	Lo '	O @ 7	C	9 @ F
	Operato		Support	υ' '	•	ALT-011	-0~	Nozzle	5 -		Oven 6.2			
	Temper: Moistur	ature, Ambi	nt ✓ Tdb	(Ta) Twb	•	ID/°F)	51 0 Lo. 5	Filter Meter E	/ 59 lor 3	<u>875</u> dн@	7 1. 88 8		at Set 2. Y.99:	50 °F
		1.10	-	ress., Bar (Pb) 30.1		nuity Check (1	Dor I	Mete			Pretest:			2 <i>0''</i> inHg
				If yes, avg. null angle_	degrees		V •	Leak Cl				002-	cfm _	9"inHg
	Traverse Point	Sampling Time	Clock Time	Dry Gas Meter Reading	Velocity Head in H2)	Orifice Pressure in H2O	Orifice Pressure H2O	STACK	PROBE	OVEN Filter	IMPINGER Outlet	METER Inlet/Avg.	METER . Outlet	Pump Vacuum
	Number	min . (dt)	(24 hr)	cuft (Vm)	(dPs)	DESIRED	ACTUAL (dH)	°F (Ts)	°F (Tp)	°F (To)	°F (Ti)	°F (Tnt-in)	°F (Tm-out)	inHg (Pv)
								Amb:	Amb;	Amb:	Amb:	Amb:	Amb:	
	13	510		158066	.06	1.06	1.1	151	249	252	52	71	70	7
	24	520		764.634	.06	4.66	13/.1	134	251	Ho	53	71	66	0
	,5 4	30		770.371	.05	94	.94	138	252	55	53	70	69	1
9	ط 4	540		775.580	,06	1.06	1.1	141	253	259	53	70	69	2
·	s 7	550	-	781.355	.05	.94	.94	141	249	246	54	72	71	2
	6 4	560	<u> </u>	786.731	.04	.76	,76	139	253	249	54	68	66	
	7 9	570		791.577	,05	194	.94	138	253	244	53	69	65	2
	s ! O	580		797.241	.09	.75	,15	133	252	248	55	70	68	1
	9 11	590		802011	,04	, 75	.75	118	250	243	51	69	66	
10	10 12	600		806.781	.03	356	.5786	105	850	251	50	69	65	_/_
	11	610		810 959	.03	.59	.59	105	048	291	49		65	
	12 11	620		815.188	.03	.58	.58	113	250	256	49	67	65	(
	13 l D	330		819.393	,04	.75	.75	113	248	250	49	67	66	
	14 9	640		824.295	.03	.58	,58	1 .	255			68	67	
	15 8	650		828.422	.03	.58	.58	112		248		67	64	
11	16 7	660		832.614	.04	.76	.76	129		255		do	65	
	17 6	670		836.851	.04	.76	.76	131		248		67	14	
	18 5	680		842.066	.05	.94	.94	131		258		68	66	2
	19 4	690		847511	.05	94	.94	131		250		1	64	7
	20 3	700		852.992	.06	1.14	1.1	130		254	_	68	63	2
	21 7	710		856934	.06	1.14	1.7	131	150	249	1	68	63	2
12	22	720		864621	.07	1.32	1.3	132	254			68	63	2
	23	730		870.954	.08	1.51	1.5	131	250			69	67	3
	24 2	740		8776.677	.07	1.37	1.3	130		258 249		69	68	2
	Notes:	750		883.902	.06	1.14	1.1	130	01	077	20	68	64	Ð

														i
	A	A	13585 NE	Whitaker Way	_ ,	ς \ \				Client:	Bulls	eye C	lass	,
		Y 1 \ \	Portland,	OR 97230	38	1 as		F		ocation:	Pos	Tlack	OR	
	MON	1111111111		3) 255-5050	, ((bol		_		Source:	OUT	- 02	210	f
	ATR QUASI	LA SERVICES	Fax (503)	255-0505	Glass Nozzie N	Aeasurements				ocation:				
		41261	A 1-		1			Probe Post-Tes			p.837.	NIC-ro	obanga D	=damaged)
	Test Met		IDEQ Rai	5	2 3	. 3735		Pitot Lk				0 @ 5		D@3
	Run#	ent Testing	(50.2)	7.	3	<u> </u>		in H2O @			Lo	<u> </u>	7 031	0.95
	Operator	7	Support	7-14		ALT-011		Nozzle			Oven(21)			Marie Control of the
		ture, Ambie	N. F	(Ta)	Std TC (ID/°F)	5 PS	Filter [5875	77			at Set 🥏	1-7
	Moisture	3%	2 Tdb	∧ Twb ─		C (ID/°F)	2	Meter Bo	ox 🛂	The second second	1.888			50
				ess., Bar (Pb) 30, (nuity Check(†	or \	Meter			Pretest:			O" inHg
-	Cyclonic Trayerse	Flow Expec	cted? N	If yes, avg. null angle	degrees Velocity Head	Orifice Pressure	Orifice Pressure	Leak Ch	eck PROBE	OVEN	Post: .(METER	cfm 9	" inHg
	Point	Time	Time	Reading	in H2)	in H2O	H2O ACTUAL	oF	*F	Filter °F	Oullet °F	Inlet/Avg. °F	Outlet	Vacuum inHg
	Number .	min (dt)	(24 hr)	coft (Vm)	(dPs)	DESTRED	(dH)	(Ts)	(Tp)	(To)	(Ti)	(Tm-in)	(Tm-out)	(Pv)
				889 63				Anib:	Amb:	Amb;	Amb:	Amb:	Amb:	
	,	760	Ч	889 631	.06	1.13	1.1	128	254	259	50	68	67	2
		770	5	S92 121	75	au	au	127	1119	247	50	68	67	7
っ	2	010		017.501	,00	77		101	0-11	0110	رسر			
3	3	180	6	900 600	.05	,99	.99	100	1774	017	50	68	67	2
	4	790	7	906.06	.04	. 17	.77	115	250	251	51	68	67	2
	5	800	8	911.542	.04	.77	77	114	250	260	51	67	63	I
	6	810	9	916.441	,03	.58	.58	108	250	247	57	67	66	
	7	820	10	920.709	.04	.17	.77	111	252	257	52	67	66	1
	8	830	- //	925.641	.03	. 58	.58	113	256	249	52	67	165	1
4	9	840	12	929.347	.03	,58	.58	106	249	260	53	67	64	1
	10	850		933.561	.03	.58	.58	107	252	250	53	66	63	1
	П	860	1)	937 712	.02	.39	.39	108	PSY	259	53	67	65	. 1
	12	870	10	941.198	,03	.58	.58	105	251	251	53	67	66	1
	13	880	9	945.412	.03	.58	.58	121	254	251	55	68	67	
	14	890	8	949.608	.03	.58		115	249	257	55	68	67	i
>	1.5	900		953.762	.63	.58	.58	113	252	249	56	68	67	1
	16	910	6	957.991	.04	.71	-77	120		252		69	62	
	17	920	5	962.718	.05	.96	.96	11		246		68	67	1
	18	930	Ч	967.788	.06	1.15	1.8	119	253	256	56	68	67	Ż
	19	940	3	973.824	.06	1.15	1.2	118	251	248	57	71	70	艺
	20	950		979.182				-			_			<i></i>
0	21	960												
	22													
	23													
	24			_										
				•										
	25	<u> </u>	<u> </u>	1		<u> </u>				<u> </u>	L	1	<u> </u>	

End @ 0930, 950 min test

						ricio Dau	BHCCC				15, 15			
Á.	·&	13585 NE	Whitaker	Way	Ī			ī		Client	Bull	\$7.50 i	,	
		Portland,		,,,,,				 	Facility I	ocation:	Par	7/14	we)	
MON	TROSE	Phone (50	•	0						Source:	7-7	OVO		
VIE BRITE	TY SERVICES	Fax (503)	255-0505		4	Measurements		ļ		⊿ocation:				
	11281 hod ODE	<u> </u>			1 2				3 - <u>(</u> _	(g / s) C nspection	p.837	-	at Set 2	7 457 - 74
	ent Testing				3	:2738		Pitot Ll		nspection	Pre: Hi			D=damaged)
Run# 2		1 - 2				~~~	<u> </u>		@in H2C)	Lo			006
Operator	•	Support		MV	_	ALT-011	10		63 <u>5</u>		Oven/2	1347 Im		
Temperat Moisture	ture, Ambi	ent Tdb		<u>63</u> ™ −	•	(D/F) <u>////</u> C (D/F)				765	1 1.888±			<u> 250 °F</u>
	atic (Pstat)			Pb) 30,1	•	inuity Check/1		Meter B			Pretest:			<u> 7150</u> 15 *** inHg
	_ `			g. null angle_	degrees	,	<i>*</i>	Leak Cl			Property		efm	(2 inHg
Traverse Point	Sampling Time	Clock Time		Gas Meter . Leading	Velocity Head in H2)	Orifice Pressure in H2O	Orifice Pressure H2O	STACK	PROBE	OVEN Filter	IMPINGER. Outlet	METER Inict/Avg.	METER Outlet	Pump Vacuum
Number	min (dt)	(24 hr)		cuft (Vm)	(dPs)	DESIRED	ACTUAL (dH)	T (Ts)	°F (Tp)	°F (To)	°F (Ti)	°F (Tan-in)	°F (Tm-out)	inHg (Py)
		15 68	980	.136	.07	1.3431	1.3	Amb:	Amb:	241	Ambi COD	Amb	Amb: 7	7
1	10	17:08	786	.350	.07	1,3431	1.3	134	249	261	65	71	7	1
2	26	PG-	992	540	004	a7469	*7 5	13/5	25%	244	64	71	71	1
3	3Ò.	516/16	997	.325	604	e7469	• 75	131	252	259	58	74	92	1
4	40		1002	050	204	67238	<u>, 72</u>	153.	250	25 ⁻ 2	57	75	71	
s	50		1006	.686	000	1.0735	-1,1	162	254	247	55	77	72	2
6	60		1012	.370	004	J156	671	158	254	257	58	80	74	1
7'	70		1017	.065	004	a 7074	a 70	174	248	244	59	81	75	1
8	80		自由ス	. 5 00	004	77074	,70	188	255	262	60	80	75	/
9	90		102	.6230	w05	8611	.86	191	250	292	60	82	76	1
10	100		1031	390	605	08643	<i>.</i> 86	187	256	263	58	82	77	1
11	110			5:605	606	1.0718	1,1	110	255	242	57	7 <i>8</i> -	76	2
12	120		7	1.390	#0b	1.07 18	1.1	161	254	265	58	77	75	7
13 2	130			3.200	00	1,2309	1,2.	185	255	244	57	77	75	2
14	140			. 225		1.0436	1,0			Hal.	•	76	73	2
15 0	150			.805		1.0309	1.0			246		76	72	2
16 9	160			360		£8950	-	197	251		59	75	71	2
178	170			0.1685	æ05	.8670	086	1	ı	248		75	71	2
18 7	180			5.1125	065	18670				268		74	71	2
19 6	190 200			7 200	18 77	54129		149	1	256		74	72	3
			- 47	7.350		3770	765		253 940		58	76	72	1
	2 2 0 2 2 0			1. 350 4.550		•3778 •3777	<u>,37</u>	137 127		263 74	59 59	73 7 3	11	1
	2 3 0	,		7.755		01895	419	125	254		,	73	70 71	<i>J</i> .
,	240		,	1,851	001	·1780	120	100			62	71	71	Į.
'	250			980 .980	80%	09348		133		243		-	72	1
Notes:	, , , , , , , , , , , , , , , , , , , 		1101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	000	<u> </u>	493		050			()	1 4	

FAN KICKED DOWN -05 TO 1/2 1/2 2 29 INTO RUN KICK HORIZON ENGIN BACK UP 245 INTO RUN HORIZON ENGIN

HORIZON ENZINEERING 16) 5702

					=	reiu Data								
	MON	TROSE	Portland,	3) 255-5050	SE Glass Nozzle M	E \ Q189E \				Client: ocation: Source: ocation:	POM T+7	SEYC dung outle TLPT	l OK 5 L	
	Date 4	\	الما (305) الما الما الما الما الما الما الما الم	233-0303	1		İ			(g / s) C		Her		<i>L</i> ₁ O °F
	Test Met)DEQ	25	2			Post-Tes						=damaged)
		ent Testing		AA 9	3	3775		Pitot Lk			Pre: Hi	O@6		7@6
	Run# 7			7.507	,			in H2O@	in H2O	,	Lo	$Q_{@}5$	70	@6
	Operator	PT	Support	TH MV		ALT-011		Nozzle	63		Oven(2)	349 Imp	. Outlet	GN-2
	Tempera	ture, Ambi	ent =	(Ta) V 63		D/°F) <i>PT 6</i> =		Filter		376				15⊘ °F
	Moisture		Tdb	Twb ~		C(ID/°F)		Meter B		dH@	1888		Y 9914	
		atic (Pstat)		ess., Bar (Pb) 20 [If yes, avg. null angle_	Contin	nuity Check	Jor ↓	Meter Leak Ch			Pretest: (inHg inHg
. i.	Traverse	Sampling	Clock	Dry Gas Meter •	Velocity Head	Orifice Pressure	Orifico Pressure	STACK	PROBE	OVEN	IMPINGER	METER	METER	Pimp
	Point Number	Time min (dt)	Time (24 hr)	Reading cult (Vm)	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL (dH)	°F (Ts) Amb:	°F (Tp) Amb:	Filter "F (To) Amb;	Outlet °F (Ti) Amb:	Inlet/Avg. F (Tm-in) Amb:	Ontlet "F (Tm-out) Amb:	Vacuum inHg (Pv)
api ani	ر 1	260	21:28	1107,270	• 03	55609	,56	122	253	266	58	77	71	/
	23	270		1171,330	003	.5609	15%	126	1248	248	59	75	71	1
	3 4	280		1115.370	004	-07478	75	126	281	259	58	76	75	_/_
	4 5	290		1120,130	<i>∞</i> 03	5609	.56	116	294	261	60	76	75	
))	56	300		1124-145	ø63	.5 525	455	142	257	241	60	7.5	74	
	6 7	310		1128 135	004	06929	469	180	258,	268	(60)	15	フス	
	, 8	320	,	1132760	005	e 8515	¥ 85	191	255	245	57	75	72	2
	. 9	330		1137830	جا () ۾	1.6410	1.0	179	244	261	54	7.5	71	2
	310	340		1143.435	06	1.0410	1:0	160	247	242	55	7.5	.7/	-
	10	350		1199 020	007	1,2 Lelo	1/13	153	285	261	55	16	13	3
P	11 12	360		1155 370	001	1.3183	1.3	110	249 0 Va	245	TC	711	11	3
12.	12	370		116 10755	607	1.0895	- 1.1	132	2001	258 210)) 	77.2	10	5
	13 17	380 390	0	1168,125	000	1.060	1 1	154 168	255 253	248 257	57 57	7.3 73	70	$\frac{5}{3}$
	14 10 15 9.	400		1179.460	,05	2724	87	179	252	253		74;	70	2
,	15 J: 16 B	410		1184575		26669	.86	183	254	252	-	74	69	2
7	17 7	420		1189700	605	:0877	.88		255		57	75	70	2
1	18 6	430		1194915	£05	≈903 <i>5</i>	490	157	- 4	241	5.7	75	70	٧
	19 S	440		1200.198	004	J3 71	,74	12/5	251	262	58	7.5	70	2
	20 4	450		1204.910	004	47470	w74	137	725Y	24/1	57	75	70	2
	21 B	460	,	12.09.610	<i>203</i>	.5747	,57	127	25	268		73	7.6	
	22 2	470	,	1213685	<u>602</u>	-3831	.38	127	252	246	,	74	70	
8	23	480		1212 -004	, 11	711	2.1	122	Ð54	241	60		68	3
	24 1	490		1025.204	.10	191	1.9	150		247	57	71	70	3
	25 Z	500		12:33.062	.05	,76	196	145	247	955	57	73	72	3

Notes:

Portcharge LENKEN 0,004@10#

HORIZON ENGINEERING 46-5702

0/33 restart after PC

	-				•	rjeju Data	Blieer							:
	o .A	· A ·	13585 NE	Whitaker Way		<u> </u>				Client:	Toler.	1640		
				OR 97230	5	١ کي پاري		F	acility L	ocation:	Fres	NAS. o	106	· ·
	MACK!	roner	Phone (50	3) 255-5050		Non		li		Source:	7.7	Duf	6- X-	•
			Fax (503)	255-0505	Glass Nozzle l	Measurements			Sample L			47/8		
		1128	116		1						p.837		at Set 2	
	Test Met			FRS	2 3	.3735			st Pitot I					=damaged)
	Run#	ent Testing Z		augh	,	277 3.7		Pitot Lk in H2O4	: Kate @in H2O		Pre: Hi	<u>၁७५</u> ७७५		
	Operator	Tito A	Support	TH MV	<u> </u>	ALT-011		Nozzle			Oven, A			
		ture, Ambi		(Ta) 63	Std TC (ID/°F) <u>& T</u>	63	Filter		5874				<i>50</i> °F
	Moisture		∜ Tdb	₩b ₩		(12. 1)	63_	Meter B	ox	dH@	1, 8 88		Y, 991 -	
				ress., Bar (Pb) 30. 1 If yes, avg. null angle		nuity Check)or ↓	Metc			Pretest:			5-'' inHg
	Traverse	Sampling	Clock	Dry Gas Meter	degrees	Orifice Pressure	Orifice Pressure	Leak Ch	PROBE	OVEN	Post:	00 2- METER	cfm METER	6- inHg
	Point Number	Time min	Time (24 hr)	Reading cuft	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	°F	°F · .	Filter °F	Outlet "F	Inlet/Avg.	Outlet °F	Vacuum inHg
	1,122,22	(dt)	(3114)	(Vm)	(1)	,	(dH)	(Ts) Amb;	(Tp)	(To) Amb:	(Ti) Amb:	(Tm-in) Amb;	(Tm-out) Amb;	(Pv)
			ļ	1533				Amu.						
	, 2	510		1238.731	.06	1,14	111	137	247	252	58	73	77	67
	2 3	520		1344,504	010	1.84	1.8	146	249	256	58	73	70	3
	3 (/	530		1251.729	.10	1.84	1.8	194	247	250	60	74	73	3
	4 5	546		1259. 26b	.0%	1.47	15	142	252	256	59	73	68	2
	5 6	550		1265.721	,07	1.29	1.3	142	336	749	59	75	68	Þ
	6	560		1272.107	.06	1.10	1.1	140	245	254	57	75	70	7
	7 B	570		1278.449	,05	.92	.92	145	257	245	59	75	74	2
٠.	8	580		1283, 698	·05	,92	.92	147	250	254	59	74	73	2
Ž,	, 10	590		1289.039	,06	1.10	1,1	146	252	248	51	77	74	2
Ĵ.	10	600		1294.987	.04	.74	,74	144	241	755	59	7/0	72	7-
	₁₁ 12	610		1300.595	<u>,04</u>	.74	.74	143	251	259	60	79	73	
	12	620		1304.917	.04	.74	,74	143	950	248	54	74	71	1
	13]	630		1309.652	.04	.79	.74	197	254	J-55	55	74	73	
	14 10	640		1314.554	105	.92	.90	1 · · · · · · · · · · · · · · · · · · ·	251			75	74	
	15 9	650			.05	.97	.92	145	754	750	54	75	70	
	16 8	660		1374910	,05	,97	<u>,92</u>	144	257		84	74	73	
	17 7	670		1330.475	·04	,74	.74	144	251	25k		76	70	
	18 1/2	680		1335 377	,05	.92	.92	145	250		53	74	76	7
	19 0	b90		1000	105	.97	,92	147	251		53	74	77	7
	20 4	700		1346.039	,06	1.10	<u> (</u>	144	255	249	54	75	74	3
	21 7	710		1352.045	.07	1.29	1.3	1/4/	255	257	55	74	77	3
	22 7	720.	·	1358 061	,67	1.29	1.3	140	249	253	55	74	69	3_
	23	730		1364487	.08	1.47	1.5	139		-			67	3
	24	740		1311.324	,0%	1.47	1.5	132	755		56	73	77	3
	25 2	750		1578.274	_,107	1.29	1.3	1154	951	155	56	72	7[0

Notes:

Ø

11

								,						
		-1	13585 NE	Whitaker Way			`			Client:	Bulls	seve		
		\B	Portland, (OR 97230	Æ.	JEE AL	· ·	Fa			POST	led t	ツき	
	HORIZO	NG ING	Phone (503) 255-5050	-d*	CARSA C	•			Source:	TI	. <i>f</i>		
			Fax (503) 2	255-0505	Glass Nozzie M	Icasŭrements					04+1		t Set 2	<u> </u>
		129/11		to con	1 .			Probe 3 Post-Test	Pitot In	(g / s) C spection	1. 53 T		change, D=	
	Test Meth			ER 5	3	202- 35		Pitot Lk			Pre: Hi			
	Run# 🗇	nt Testing	170	29/		2 0 0 0		in H2O@		•		64 @ 5		n/
	Operator		Support	TH MV		ALT-011	J JPN	Nozzle			Oven 62			
	Temperat	ture, Ambie	nt	(Ta)" & 3				Filter /			1 (20.0		t Set 2	
	Moisture	22.	Tdb	Twb -	Stack TC		<u>97</u>	Meter Bo		dH@	1,889		¥99150	∫ ⁿ inHg
	Press., St	atic (Pstat)		ess., Bar (Pb) 📆 🗘 . \ If yes, avg. null angle		ruity Check †	or \	Meter Leak Che			Pretest: Post:	007 002	efm / efm k	
	Traverso	Sampling	Clock	Dry Gas Meter	Velocity Head	Orifice Pressure	Orifice Pressure	STACK	PROBE	OVEN	IMPINGER.	METER	METER	Pump
	Point Number	Time min	Time (24 hr)	Reading cuft	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	°F	°F	Filter *F	Outlet *F	halet/Avg. °F	Outlet *F	Vacuum inHg
	1183004	(dt)	(,	(Vm)			(dH)	(Ts) Amb:	(Tp) Amb:	(To) Amb:	(Ti) Amb:	(Tm-in) Amb:	(Tm-out) Anib:	(Pv)
									 / (~	و جهو			
	13	760		1384. [00]	,07.	1.29	(.3	137	351	055	56	1	70	12
	2 V	770		1390,466	,06	1.14	1. (135	253	249	560	79	70	7
	35	130			,06	1.14	1-1	134	250	247	55	73	69	7
	46	7010		1401.864	05	.94	.94	134	250	246	56	74	69	7
3	5.7	800		1407 564	, 06	1.14	1-1	133	256	259	6957	73	69	2
	68	810		1413.412	.05	,94	94	134	253	748	56	74	70	7
3	19	820		1418.761	,05	,94	.94	135	251	759	56	74	69	2
	s / O	830		1423.971	.04	74	,74	136	F48	₂ -50	55	73	69	2
	, 11	840		1433.415	604	.74	.74	136	247	251	55	74	71	
	10/2	850		1438.136	.04	.74	.74	136	<u> 248</u>	263	56	74	73	
4	11	860		1448-4-04	.oY	174	.74	136	251	248	56	75	79	
	12 //	370		1442.909	,04	.74	.74	136	<i>953</i>	254	57	75	74	
	13 [0	E\$0		1447.654	,03	.56	.56	133	250	246	58	76	14	
	14	890		151.762	,04	.74	.74	131	254	250	59	76	75	
	15 B	900			,05	,94	94	171	850	351	59	77	14	2
	16 7	910		1460.342	,04	.74	179	127	153	249	59	16	75	1
ح	17 6	920		1965.718	,04	.74	.74	130	753	<i>95</i> 7	59	78	77	
	18 5	930	0900	1466.846	ندو				**********					
	19 Y	940	*									 		
	20 3	950									1	<u> </u>		
	21	960										<u> </u>	<u> </u>	<u> </u>
	22	970												
6	23	980		, , , , , , , , , , , , , , , , , , , ,						<u> </u>		-	<u> </u>	
	24											<u> </u>		
	25 Notan			<u> </u>			<u> </u>		L	<u> </u>		<u>l</u>	<u>l, </u>	

Sample Recovery / Moisture Catch

BULLSEYE GLASS FURNACE T7-INLET PORTLAND OR

26-Apr-16 SH,JL,JF,BC,JM,CH,JH

ODEQ5

mew

Run 1 1,039.20 866.10	Run 2	Run 3	
	1 000 00		
	1 000 00		
966 10	1,080.00	778.13	
800,10	900.00	651.00	
557.10	555.00	279.00	
200.00	200.00	200.00	
109,35	145.35	172.35	
373.41	380.32	327,36	
482.95	525.93	500.02	
472.00	554.00	500.00	
-2.3%	5.3%	0.0%	
546.00	553.00	882.00	
520.00	520.00	843.00	
26.00	33.00	39.00	
135.35	178.35	211.35	
135.60	178.68	211.74	
clr	clr	clr	
yes	yes	yes	
15-8-756	15-8-714	15-8-713	
green	green	green	
	135.35 135.60 clr yes 15-8-756	135.35 178.35 135.60 178.68 clr clr yes yes 15-8-756 15-8-714	135.35 178.35 211.35 135.60 178.68 211.74 clr clr clr yes yes yes 15-8-756 15-8-714 15-8-713

Sample Recovery Worksheet

	13		Deter	4/26-	4/27/
Client:	Dull	seye	Date:	4/20-	3 u-11-
Facility Location:	Por +1	and, OR	Source:	Glass	-urnac
Operator:	TE	54	Sample Location:	Inle	<i>t</i>

Balance Calibration (1000, 500, 200 g) Need one per each 3-run test	Tolerance must be within ± 1.0%			
·	~ } (DIN 4	<i>÷} (</i> RUN 2	RUN 3	
IMPINGER CONTENTS	RUN 1	(02d /458	Kon o	
Container, condensate & rinse, grams	677.2/36d	7, 2	0-1	
Container & condensate, grams	591 / 27.5.1	622/278	651	
Empty container, grams	279/278.1	277/278	279/278	
Initial volume, ml	<u> 200 </u>	<u> </u>	200	
Initial contents	DI HZO	DI HO	DI HO	
Initial concentration	100%	100%	100%	
Net water gain, ml				
Condensate appearance	<u>Cleas</u>	Clear	clear	
Level marked on container	<u>ye9</u>	<u> </u>	<u>yez</u>	
pH of condensate				
Rinsed with	DI HO/Acet	one		
Solvent Name and Lot No.	DI 40: 212	7		
Solvent Name and Lot No.	Acetone: 150	70138		
SILICA GEL (w/impinger, top off)			X D 2	
Final weight, grams	546	553	882	
Initial weight, grams	520	520	520 843	
Net gain, grams	<u> </u>	,		
TOTAL MOISTURE GAIN				
Impingers and silica gel, grams		:		
FILTERS	in to the top to	and the second	158713	
Front filter number	158756			
Front filter appearance	gilly, Moister	GIEEU WA	91889	
Back filter number	TOBE QUEST	_ NA	_NA_	

dias.

Sample Recovery / Moisture Catch

BULLSEYE GLASS FURNACE T7-OUTLET PORTLAND OR

26-Apr-16 PT,BS,JH,MV,JF

mew

nger, Contents,Condensate & Rinse nger, Contents & Condensate nger nger	Units g g g ml g	Run 1 1167.00 1024.00 557.00 200.00 267.35	Run 2 1205,20 1040.00 557.00 200.00	Run 3 1153.99 1032.30 555.00 200.00	
ger, Contents & Condensate ger	g g ml	1024.00 557.00 200.00	1040.00 557.00	1032.30 555.00	
ger, Contents & Condensate ger	g g ml	1024.00 557.00 200.00	1040.00 557.00	1032.30 555.00	
ger	g ml	557.00 200.00	557.00	555.00	
	ml	200.00			
ensate			200.00	200.00	
ensate	\mathbf{g}	267.35		∠∪∪,∪∪	
			283.35	277.65	
le Correction Volume	\mathbf{ml}	343,25	365.49	321.90	
le sent to lab	mİ	611.08	649.35	600.05	
le received by lab	\mathbf{ml}	619.00	670.00	600.00	
		1.3%	3.2%	0.0%	
weight	g	870.00	570.00	565.00	
weight		832.00	520.00	520.00	
	g	38.00	50.00	45.00	
ensate + Silica Gel gain	g	305,35	333.35	322,65	
Ioisture Gain	ml	305.90	333.96	323,24	
		15-8-758	15-8-757	15-8-764	
arance		white	white	white	
]	le sent to lab le received by lab weight weight ensate + Silica Gel gain loisture Gain	le sent to lab ml le received by lab ml weight g weight g ensate + Silica Gel gain g loisture Gain ml	le sent to lab ml 611.08 le received by lab ml 619.00 1.3% weight g 870.00 weight g 832.00 g 38.00 ensate + Silica Gel gain g 305.35 floisture Gain ml 305.90	le sent to lab ml 611.08 649.35 le received by lab ml 619.00 670.00 1.3% 3.2% weight g 870.00 570.00 g 832.00 520.00 g 38.00 50.00 ensate + Silica Gel gain ml 305.90 333.96 15-8-757	le sent to lab ml 611.08 649.35 600.05 le received by lab ml 619.00 670.00 600.00 1.3% 3.2% 0.0% weight g 870.00 570.00 565.00 g 832.00 520.00 520.00 g 38.00 50.00 45.00 ensate + Silica Gel gain ml 305.90 333.96 323.24 15-8-757 15-8-764

ONER 38

Sample Recovery Worksheet

HORIZON ENGINEERING 16-57024 50

	Bullseye Portland, OR JF JU	Date: _ Source: <u>(</u> Sample Location: _		7
Balance Calibration (1000, 500, 200 g) Need one per each 3-run test	Tolerance must b	e within ± 1.0%		
IMPINGER CONTENTS Container, condensate & rinse, grams Container & condensate, grams Empty container, grams Initial volume, ml Initial contents Initial concentration Net water gain, ml Condensate appearance	RUN 1 645/522 629/395 279/278 200 DI 40	RUN 2 GLG /577.2 (028 / \$78.94 279/278 200 DI H20 100 70	RUN 3 200 DI HO 100 %	(list) ~5m
Level marked on container pH of condensate Rinsed with Solvent Name and Lot No. Solvent Name and Lot No.	DI H20/Ac DI H20: 2/2 Acetone:	etone		- - -
SILICA GEL (w/impinger, top off) Final weight, grams Initial weight, grams Net gain, grams TOTAL MOISTURE GAIN	520 832	<u>570</u> 520	<u>565</u> 520	-
Impingers and silica gel, grams FILTERS Front filter number Front filter appearance Back filter number	158755 White	158757 White	# White	

Blank Correction

BULLSEYE GLASS FURNACE T7-INLET PORTLAND OR

26-Apr-16 SH,JL,JF,BC,JM,СН,JH

BLANKS						IIIV
Acetone	120	0 ml	0.0000 g	m	0,00 n	ng/100ml
Acetone	Acceptable	Limit		•		ıg/100ml
	Applicable Correction					ıg/100ml
H2O, Residue	100 ml		0.0000 g	m	0.00	
H2O, DCM	100 ml		0.0000 g		0.00	
H2O, Combined	100) m1	0.0000 g		0.00	
H2O, Combined	Acceptable	Limit	_	,	1.00	
H2O, Residue	Applicable	Correction			0.00	
H2O, DCM	Applicable				0.00	
Filter-Front	15-8-765	2 ID	0.0002 g	m		
RUNS			Run 1	Run 2	Run 3	
ACETONE-Front	Volume	ml	96	46	116	
	Weight	mg	8.7	10.3	10.7	
	Blank	mg/100ml	0.00	0.00	0.00	
	Correction	mg	0.00	0.00	0.00	
	Net	mg	8.70	10.30	10.70	
ACETONE-Back	Volume	ml	132	154	100	
	Weight	mg	2.8	1.9	2.6	
	Blank	mg/100m1	0.00	0.00	0.00	
	Correction	mg	0.00	0.00	0.00	
	Net	mg	2.80	1.90	2.60	
IMP WATER-Residue	Volume	ml	373.4	380.3	327.4	
	Weight	mg	4.2	3.6	5.7	
	Blank	mg/100 ml	0.00	0.00	0.00	
	Correction	mg	0.00	0.00	0.00	
	Net	mg	4.20	3.60	5.70	
IMP WATER-Extract (DCM)	Volume	ml	373.4	380.3	327.4	
	Weight	mg	0.1	0.2	0.0	
	Blank	mg/100ml	0.00	0.00	0.00	
	Correction	mg	0.00	0.00	0.00	•
	Net	mg	0.10	0.20	0.00	
FILTER-Front	ID		15-8-756	15-8-714	15-8-713	
	Weight	mg	1183.4	1278.6	1357.9	•
EDON'E HAT E TOTAL						
FRONT HALF TOTAL		mg	1192.10	1288.90	1368.60	
BACK HALF TOTAL		mg	7.10	5.70	8.30	
FOTAL	mn	mg	1199.20	1294.60	1376.90	
PERCENT BACK HALF		%	0.6%	0.4%	0.6%	

Blank Correction

BULLSEYE GLASS FURNACE T7-OUTLET PORTLAND OR

26-Apr-16 PT,BS,JH,MV,JF

mew

						mew
BLANKS					0.00	(100 1
Acetone	120		0.0000 gm		0.00 mg	
Acetone	Acceptable				0.80 mg	
	Applicable (0.00 mg	/100ml
H2O, Residue	100		0.0000 gm		0.00	
H2O, DCM	100		0.0000 gm		0.00	•
H2O, Combined	100	ml	0.0000 gm		0.00	
H2O, Combined	Acceptable	Limit			1.00	
H2O, Residue	Applicable (Correction			0.00	
H2O, DCM	Applicable (Correction			0.00	•
Filter-Front	15-8-765	ID	0.0002 gm			
RUNS			Run 1	Run 2	Run 3	
ACETONE-Front	Volume	ml	76	54	62	
	Weight	mg	1.2	0.3	1.4	
	Blank	mg/100ml	0.00	0.00	0.00	
	Correction	_	0.00	0.00	0.00	
	Net	mg	1.20	0.30	1.40	
ACETONE-Back	Volume	ml	108	155	22	
ACETORE Buck	Weight	mg	1.7	2.0	0.0	
	Blank	mg/100ml	0.00	0.00	0.00	
	Correction	mg roomi	0.00	0.00	0.00	
	Net	mg	1.70	2.00	0.00	
IMP WATER-Residue	Volume	ml	343.3	365.5	321.9	
IIVII WAIEK-Kesidiie	Weight	mg	10.0	5.9	4.3	
	Blank	mg/100ml	0.00	0.00	0.00	
	Correction	mg 100im	0.00	0.00	0.00	
	Net	mg	10.00	5.90	4.30	
IMP WATER-Extract (DCM)	Volume	mĺ	343.3	365.5	321.9	
HVII WATER-Lander (BOW)	Weight	mg	0.0	0.1	0.3	
	Blank	mg/100ml	0.00	0.00	0.00	
	Correction	mg	0.00	0.00	0.00	
	Net	mg	0.00	0.10	0.30	
FILTER-Front	ID		15-8-758	15-8-757	15-8-764	
FILTER-FIOR	Weight	mg	0.3	0.0	2.5	
FRONT HALF TOTAL		mg	1.50	0.30	3.90	
BACK HALF TOTAL		mg	11.70	8.00	4.60	
TOTAL	mn	mg	13.20	8.30	8.50	
PERCENT BACK HALF		%	88.6%	96.4%	54.1%	

ANTECH

Analysis/Technology

Mr. David Bagwell MONTROSE ENVIRONMENTAL 13585 NE Whitaker Portland OR 97230

page 1 of 2

May 13, 2016 Job# 1612400-06

<u>Identification</u>: Bullseye Glass #5702

Received: 5/3/16

Method: ODEQ 5

Sample # Identification	12400	12401	12402	12403	12404	12405
	GFT7 In	GFT7 In	GFT7 In	GFT7 Out	GFT7 Out	GFT7Out
	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
Front Water: Volume (mls) Residue (g)	96	46	116	76	54	62
	0.0087	0.0103	0.0107	0.0012	0.0003	0.0014
Back Acetone Volume (mls) Residue (g)	132	154	100	108	155	22
	0.0028	0.0019	0.0026	0.0017	0.0020	0.0000
Impinger water Volume (mls) Residue (g)	472 0,0042	554 0.0036	500 0.0057	619 0.0100	670 0.0059	600 0.0043
Dichloromethan Volume (mls) Residue (g)	<u>ne:</u> 150 0.0001	150 0.0002	150 -0.0004	150 -0.0001	150 0.0001	150 0.0003
Filters: Number: Residue(g):	15-8-756 1.1834	15-8-714 1.2786	15-8-713 1.3579	15-8-75 \$8 0.0003	1 15-8-757 -0.0002	15-8-764 0.0025

Respectfully submitted:

ANTECH

Diana Tracy, president

501 N.E. THOMPSON MILL ROAD CORBETT, OREGON 97019 503/695-2135

FAX: 503/695-2139 E-mail: antech@cascadeaccess.com

ANTECH

Analysis & Lechnology

MONTROSE ENVIRONMENTAL 13585 NE Whitaker Portland OR 97230

page 2 of 2

May 13, 2016

Identification: Bullseye Glass #5702

Job# 1612400-06

Received: 5/3/16

Method: ODEQ 5

Sample #

12406

Identification

Blanks

Acetone:

Volume (mls):

120

Residue (g):

-0.0001

Water:

Volume (mls):

100

Residue (g):

-0.0001

DCM:

Volume (mls):

150

Residue (g):

-0.0001

Filters:

Number:

15-8-765

Residue:

0.0002

Respectfully submitted:

ANTECH

Diana Tracy president

E-mail: antech@cascadeaccess.com

ANTOCOLI		PDF 5/4/16	page <u>/ of /2</u>
ANTECH SAMPLE DATA: EPA RESIDUES		4;15A	
Analyst / review	er:		Montrose
Job# 1612400-06 Identif	ication: Bullseye L	lass	<i>5702</i>
FRONT ACETONE: Sample # 13 400 Sample IGFT 7 E R vol mark Date/time 5-9 1/4 Into dessicator Vol(mls) 96 date/time weighed GWt1(g) 134.8479 5-5 104 GWt2(g) 134.8478 5-6 7A GWt3(g) GWt4(g) GWt5(g) GWt5(g) GWt6(g) Average 124.8392 5.3 10	12401 TTE R2 168416 5-4 119 46 date/time weighed 109.9187 5-5104 109.9190 5-674	13402 FTTE R3 16 6-4 11A 116 da 115.6520 5 115.5521 5 115.5521 5 115.5414 5	ate/time veighed 5-5-104 6-6-7A
Net (g) 0.0087	0.0103	<u>0.0107</u>	
Date/time 5-576 Into dessicator Vol(mls) 132 date/time weighed GWt1(g) 1/4.4380 5-510a GWt2(g) 1/4.4380 5-6.7A GWt3(g) GWt4(g) GWt5(g) GWt6(g)	12401 GFT7IR2 148422 5-5 7A 154 date/time weighed 107.1615 5-5104 107.1610 5-57A	5-5 74 100 116.5003	date/time weighed 5-5 104 5-6 7/4
Average 114.4380 *Tare (g) 114.4352 5·3 If Net (g) 0.0038	107.1594 5-31P 0.0019		5-3 IP

ANTECH		page 2	of 12
SAMPLE DATA: EPA RESIDUES .	170 2°		pontrse
Analyst: review Job# Job # fication: Bulloeye L	lass	5702	
			
FRONT ACETONE: Sample # 12403	12404	12405	
Sample ID GF170R1	SFT7012 168419	GFT7083 MML 168420	
vol mark	5-4 11A	5-4 15H	
Date/time 5-4 11h Into dessicator	54 date/time	لو کم date/time	
Vol(mls) 76 date/time weighed	date/time weighed	weighed	
GWt1(g) 127.7761 5-5104	105.1312 6-5104	167.0150 6-5 10A 107.0142 5-67A	
GWt2(g) 127.7753 5-6 7A	105.1303 5-67A 105.1308 5-884	107.0142 5-8 814	
GWt3(g) 137.7758 5-8 8/1 GWt4(g)			
GWt5(g)			
GWt6(g) Average 127.7756	105.1306	107.0145	
*Tare (g) 127.7744 5316	105.1303 5-31P	107.013) 5-31P	,
Net (g) 0.0012	0.0003	0.0014	
		******	<i>d</i>
BACK ACETONE:		12.15	$^{2}(O)_{\otimes}$
Sample # <u>/2403</u>	12404	12405 GFT7063	
Sample ID GF T70 R1 vol mark 146424	GFT70R2 168425	morre 160426	U
Date/time 5-5 74	5-57A	5-4 114	
Into dessicator Vol(mls) date/time	/ුර්රි date/time	<u>22</u> date/time	
weighed	weighed 104.0353 5-3184	weighed 6-5 の4	•
GWt1(g) 111.5457 5-510A GWt2(g) 111.5448 5-574	104.0344 5-57A	109.7727 6-67A	
GWt3(g) 111.5462 5-8 4A	104.0.354 5-8 84	109.7732 5-8 8A	
GWt4(g) #1.5139 5-9.7A GWt5(g)	104.D358 5-9/n		•
GWt6(g)	1011 0351	109.7730	
Average 111.5 461	104.0356	, , i	-
*Tare (g) 111.54445-316	104.0336 5-3 1P	169.77305.31°	*
Net (g) 0.0017	0.0030	0.0000	

Page 3 of 12

montrose 101612400-06 5702 ANTECH SAMPLE DATA: EPA RESIDUE IMPINGER WATER: 12 4*02* 12401 Sample # 12400 GFTTR3<u>GETTRA</u> 166429 Sample ID GFT7IE! 148427 vol mark 10-5 7A 5-5 7A Date/time 5-5 74 Into dessicator 500 date/time date/time date/time Vol(mls) weighed weighed Weighed 159.92.10 5-510A 5.5 OX 141.5855 5-5 10A GWt1(g) 5-6 7A 159.9199 135,5151 5-67A GWt2(g) 141.5847 5-6 7A 15 9.9213 5-8 8A GWt3(g) 141.5858 5971 159.9214 GWt4(g) 141.5863 GWt5(g) GWt6(g) 159.9214 125.5153 Average 41.5862 159-9157 5-3 10 5-311 125.5117 *Tare (g) 141.5830 900p 0.0036 Net (g) DICHLOROMETHANE: 12402 12401 168 435 Sample # 12400 168434 Sample ID ____ 16B433 vol mark 5-514 5-57A Date/time 5-4 119 Into dessicator date/time (150) date/time date/time Vol(mls) weighed weighed Weighed 5-5189 5-3/8A GWt1(g) 88.9214 99.3003 5-510A 5-6 7A 5-67A GWt2(g) 88.9212 5-6 7A 3*00*1 GWt3(g) GWt4(g) GWt5(g) GWt6(g) 88.8494 99.3002 88 9213 Average 88.8498 5-318 99.3000 5-3 18 *Tare (g) 88.921 -0.0004 0.000a

Net (g)

Page 4 of 12 **Montree** 670 2

ID 16 12400-06 ANTECH SAMPLE DATA: EPA RESIDUE IMPINGER WATER: 2405 12404 Sample # 12403 168 432 GFT70R2 16B431 Sample ID GF 170R1 168430 vol mark 5-574 5-574 Date/time 5-5 74 600 Into dessicator date/time 670 date/time Vol(mls) 619 date/time weighed weighed Weighed <u>/42.72.7</u>1 142.7262 5.5/0A 5.5 10A 170.0870 GWt1(g) /64.4956 5-5/07 5-6 7A 5-67A 170.0862 GWt2(g) 164.4945 5-67A 142.7266 5-8 9A 5-8 9A 170.0865 GWt3(g) 164.4950 5-8 9A GWt4(g) GWt5(g) GWt6(g) 142.72641 170.0864 Average 144 4948 142.7221 5-3 1P 170.08055316 *Tare (g) 164.4848 5-3 16 <u>0.0043</u> 0.0059 Net (g) <u>D. 010</u>0 COPA DICHLOROMETHANE: 12405 12404 Sample # 12403 168438 168437 Sample ID _____ /6 @ 436 vol mark 5-571 5-57A Date/time 5-57A (vel) Into dessicator date/time (150) date/time date/time Vol(mls) (150) weighed weighed Weighed 5-510A 120.9662 100.5051 5-510A 5-5 10A GWt1(g) 98. 9021 5-6 7A 100.5052 120.9663 5-67A 56 7A GWt2(g) 98.9019 GWt3(g) GWt4(g) GWt5(g) GWt6(g) 100.5052 120,9663 98.9020 Average 100,50<u>4</u>9 5-3 1A *Tare (g) 98.90215-3 1P 120.9662 5-3 1P 0.0003 0.000 Net (g) -0.0001

Page <u>5 of 12</u>

SAMPLE DATA: EPA RESIDUES	AREDOU	1D/612	100-06			_	702
Sample # 12 400 Sample ID GETTLE! Sample ID GETTLE! Filter # 15 - 8 - 75 6 GETTLE? 15 - 7 - 7 6 GETTLE? 15 - 7 - 7 7 6 GETTLE? 15 - 7 - 7 7 6 GETTLE? 15 - 7 - 7 7 6 GETTLE? 15 - 7 - 7 7 7 6 GETTLE? 15 - 7 - 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ANTECH SAMPLE DATA:	EPA RESIDUES					
GWt1(g) 1.4770	Sample ID <u>GFT7</u> Filter # <u>15-8</u> Date/time <u>5-3</u>	<u>I</u> RI -756	GFT7IRD 15-8-714	G	FT7 IR3 15-8-7/3		
Tare (g) .3638	GWt1(g) 1.47 7 GWt2(g) 1.47 9 GWt3(g) 1.536	5-510A 5-6-10A 5-6-7A 5-8-9A	1.6312	5-510A	1.0253	5-5 10A 5-6 7A 5-8 9A	
Tare (g) .3534 1.2786 1.3579 FILTERS: Sample # /2403 Sample ID GF 170R1 Filter # /5-8-758 Date/time 6-3 IIA In dessicator GWt1(g) .3563 5-510A .3565 5-510A .3574 5-510A .3567 5-707 5-7	Average 1.53	362	1.6316		1.7137		
Sample # 12403 Sample ID GF 170R1 Sample ID GF 170R1 Filter # 15-8-758 Date/time 6-3 IIA In dessicator Date/time GWt1(g) .3563 5-510A .3565 5-510A .3574 5-5 10A GWt2(g) .3562 5-610A .3565 5-610A .3554 5-610 7A GWt3(g) .3562 5-610A .3565 5-610A .3565 5-7 10A GWt3(g) .3560 5-10A .3565 5-10A .3565 5-7 10A GWt3(g) .3560 5-10A .3565 5-10A .35667 5-7 10A GWt4(g) .3560 5-7 10A .3565 5-7 10A .3566	Tare (g) .35: Net (g) // 1.13	18 12-4-11	3530 1.2786	13-4-12	<u>. 355४</u> <u>/. 3 5</u> 79	124-15	
Sample # 12403 Sample ID GFT70R1 Sample ID GFT70R1 Filter # 15-8-758 Date/time 6-3 IIA In dessicator Date/time GWt1(g) .3563 5-510A .3565 5-510A .3574 5-5 10A GWt2(g) .3562 5-610A .3565 5-617A .3554 5-617A GWt3(g) GWt4(g) Average .3563 .3565 .3567 13-4-15 .3565 Tare (g) .3560 15-4-15 .3567 13-4-15 .35HD 13-4-15		**********					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample # /24 Sample ID GF T Filter # /5-8 Date/time 6-3	70R1 -758	GFT70e2 15-8-757	, · · · · · · · · · · · · · · · · · · ·	GFT7083 15-8-764	C	
Average <u>.3563</u> .3565	In dessicator GWt1(g) 35 GWt2(g) 35 GWt3(g)	Date/time		5-510A	.3554	5.5 101 5-6 7A 5-8 9A	
Tare (g) 3560 13-4-15 3567 13-4-15 3540 13-4-15	7	563	. 3565		.3565		
	Tare (g)	560 12-4-	15 .3567	12-4-15	0.00a	12.4.15	

ANTECH EDA DECIDIES	Page OI
SAMPLE DATA: EPA RESIDUES	montre
reviewer:	
Analyst: 1012400-06 Identification: Bullseye Slo	3200
100H_101a.400 05	
BLANKS:	
IMPINGER WATER:	DCM:
	12.101
Sample # 12 406	10400 168441
Sample ID GF77BL 1684 39 GF77BL 168440	
vol mark	5-4 1/A
Date/time 5-4 114	
Into dessicator - Info	<u>(150)</u> date/time
Vol(mls) 120 date/time weighed weighed	weighed
weighed	1189348 5-510A
GWII(B) 11/10 5/ 7A	118.9345 5-6 7A
GW12(g) 117-6589 5-6 7A 133.3449 5-6 7A	
GWt3(g)	
GWt4(g)	
GWt5(g)	
GWt6(g) Average 117.6591 132.3451	118.9347
Average 117.4591 132.345/	
*Tare (g) 117.692 5.3 IP 130.3452 5-3 IP	118.9348 5-3 18
	-0.0001 UD
Net (g) -0.0001 -0.0001	V - 1
(нанавиченая воздания выправичения выправить выстить выправить вы	U
FILTER	
Sample # 12406	
Sample ID GFT7 BL	
Filter # 15-8-765	
Date/time <u>5-3 //9</u>	n
Into dessicator Vol(mls) date/time date/time	date/time
Vol(mls) date/time weighed weighed	weighed
0 = 20 = = 104	No. No. of Concession, No. of Co
UWII(g)	
UW(2(g) .5557.	
GWt3(g)	
GWt4(g) GWt5(g)	
GWt6(g)	
Average 3531	
*Tare (g) <u>.3539</u> 12-4-15	
Net (g) 0.0002	
* 12- (2)	

ANTECH		Page 7_of_12	
SAMPLE DATA: EPA RESIDUES		and a	
Analyst: revi	ewer:	10 jonus	e
Job# 1613400-06 Iden	ntification: Bullsage &	(bas 5/02	
HOUSE BLANKS:	G		
ACETONE: Sample # 12 4 Sample ID Lab blank vol mark Date/time	IMPINGER WATER: 12 4 12 4 12 6 blank 5-4 114 (100) date/time weighed 1420684 5-51004 142.0684 5-6.07A 162.0684 5-6.18	DCM: /24 lab beare	
			•
FILTER: Sample # Sample ID Filter # Date/time Into dessicator	FILTER:	EMPTY: 124 lasceant 5-4 11A	
Into dessicator	date/time weighed	105.3491 5.594 105.3493 5.674 105.3498 5.884 105.3495 5.971 105.3497	
Net (a)		0.0001	

A PRINCIPLE				pageofof	12	
ANTECH SAMPLE DATA: Analyst: 10 12 4 00 - 06	RESIDUES reviewer: Identification:	Bulls	rye Blas	Δ	montro 570	<u>se</u> 3_
QC DATA: Date/time Balance calibrated (NTIS cert wts) Date/time Temp/temp Relative humidity (%) 32	5-5 	5-6 	5.8 	5-9 		
Date/time Balance calibrated (NTIS cert wts) Date/time Temp/temp Relative humidity (%) Reagent Tracking:						
Reagent: Brand:	<u>Lot #</u>	Expiration	<u>ı Date</u> :	*		17
Jan CP	Dn 38	8				
acetra CP	<u>DP05</u>	0				
DIHO Phoco	1501 AC	₩				
				·		

balance # 50505744

ANALYTICAL BALANCE CALIBRATION FORM

1612400-06

Balance name

0. 10012

0.10018

0.10002

0.10004

0.10007

0.09999

0.10004

0.1000

0.1000

0.10017.

0.10004

0.10003

6.0999

0.1000

0.10009

4-13-16 0.10007

4-12-16

4-14-16

4-15-16

4/16/16

4-25-16

4-24-16

4-27-46

4-86

4.2916

5-1-16

52-16

5-3-16

54-16

5-5-16

5-6-16

58-16

59-16

alibrated

Number 50505744

Classification of standard weights 100.0000 g Analyst 50.0000 g 10.0000 g 100.0000 تسيع 1.0000 g 0.500 g 100,00005 pate a) T. occola. 0.0999 378-16 100,000/19. 1,00013. 320-16 D. 1000) 100.00015 1.00017. 0.10000 100,0000 5.21.16 1.00015 3-216 0. 10000 100,0000 10000 0.1000 100,000g. 1.00019. 3-23-16 0.09993 1,00019 100,00004 2-34-14 0.1000 1.00009 3716 100.000 0.10009 00.0000 3-28-16 1,00019 0.10007 100.0000 1.00001. 4-1-16 0.10001 100,00019 4-3-16 .000lg. 0.10018 100.00019 1.00009. 4-4-16 4-7-16 0.1000 100.000 1.00019. 0.10003 100.000 /2 1.00012 4-8-16 100.00012 4-11-140.10018

1.000%

1.0000

1.00013

1.00012.

1.00009

1,00019

1.00000

1,00009

1,00019

1.00012

00004

. OOOOs

1.00009.

1.00009

1.0000

1.00019.

1.00017

Quality Assurance Handbook M5-5.2

100.00002

100.00003

100,00019

100.00012

100,0000

100.00009

100,0000

100.000

100.0000

100,00019.

100.00019.

100,00019.

100.00011.

100.0000

100.00019

100.00007

HORIZON ENGINEERING 16-5702

		1 1 1 mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	21	i in
			·		
		011 5 c	PN 20		
	-		•	AUE	
				.3558	
				.3520	
D -104					
705	, 3531	.5551	,3310		
		2 -00	2522	3533	
15-8-706					
707					
708					
709	, 3581				
710	3565	3565	, 19ldo		
				3559	
15-8-711	, 3558				
712	.3568				
713	, 3558				45
-714	-, 3530				
715	. 3522	.3621	. 3922	حورر.	- 1
			2520	2634	
15-8-716	,3534		- , 		
	,3541	.3542			
	.3513	.3514			
719		.3526			
	. 3529	.3529	. 3529	1294]	
,,,,,				2020	
15-8-721	, 3525	.35 <i>25</i>			
		3543			- 14 - 14
		3520	·		*
		3539			
	0	3560	. 3560	. 3560	
100	<u> </u>				
					-
	708 705 15-8-706 707 708 709 710 15-8-711 712 713	702 ,3558 703 ,3519 0 -704 .3558 705 ,3532 707 ,3596 708 ,3558 709 ,3581 710 ,3565 15-8-711 ,3558 712 ,3565 713 ,3558 -714 ,3530 715 ,3522 15-8-716 ,3534 717 ,3541 718 ,3513 719 ,3526 720 ,3529	RH 23	15-8-70	RH 23 RH 25 RH 30 13-30 13-3 12-4 946 15-8-701

CONY

		ен 23	RH 35	RH 30	<u> </u>
AUE_		11-30	12-3_	12-4	AVE
.3525	15-8-751	.3515	·3516	.3517	3516
.3540		. 3528	, 3528	.3528	.3528
. 3534	753	.3539	3539	.3540	.3539
.3530	-754	.3525	3525	.3525	.3525
.3580	755	. 3558	3559	.3551	. 3559
. 3 3 8 0			- "		
.3546	75-8-756	,3538 -	3529	3508	. 3508
.3580	757	. 3567	.3567	.3567	3567
.3664	-7 5 8	3560	. 3561	3540	.3560
	759	. 3573	3573	. 3578	. 3573
-3556 2648	760	,3677	,3578	. 35 78	.3578
.3583	140	14411			
2576	15-8-761	.3582	.3582.	.3582	.3582
3575	762	. 3569	.3570	.3570	.3570
.3548 3568-	76.3	.3560	. 3560	.3561	.3560
	-764	-,3539	. 3541	, 3541	.3540
.3576 2509	1 -765	3529	.3529	. 3:53∂	. 3529
-3509	J - 1 (2.3	1 V - DO 1			
256	15-8-766	.3540	.3541	. 3542	. 3541
, 3515	767	. 3527_	. 3527	. 3527	. 3527
.3512	768	. 3528	.3528	-3528	. 3528
.3525	769	. 3517	.3518	-3518	. 3518
.3506	770		3506	. 3506	.3500
. 35%	110				
7 -40	u= 0771	3539	3539	-,3539	
. 3543	772	. 3558	.3559	, 355 7	,355
	77.3	. 3562	.3563	.3543	.3563
3542	774			,3555	.3555
3541	775	A	3516	,3516	.3514
.3491	179	, ,,,,,			

1612400-06 Page 120612

		•	<i>U</i>	
4-25 8430	1613401	123.6717	160426 109.7730	
	402	106.5274	427 141,5820	
	403	109.9200	428 125.5117	
	404	120.4775	429 159,9 157	
*	405	107.3002	430 144.4848	
e - -	16B 406	103,9335	168431 170.0805	
7. 7.	407	97. 2730	432 143.7221	
4-29	408	103.6724	433 88. 9212	
KH 33	409	116.7660	434 99.3000	
	410	103, 9369	435 88.8498	
	168 4H	87. 1556	168 436 98.9021	
	412	105.6050	437 120.9662	
	4/3	111.5222	438 100.5049	
	414	103.3506	439 117. 6592	
6-3 RH82	415	124.8392	440 /32.3452	
	16B 416	102,9086	16B 441 118.9348	,
	417	115-5414	442 104.2690	
	418	127.7744	443 162.0689	
	419	105.1303	444 118.7341	,
	420	107.0131	445 105.3496	
	148 421	114.4252	16B446 113.1254	,
	422	107.1594 81	139 447 67,7602	•
	423	114.4975	448 72.7309	
	424	॥ ५५५५	449 66.0372	
	425	104.0336	450 65.5801	
	•		2 4101	

QUALITY CONTROL SERVICES

LABORATORY EQUIPMENT • SALES • SERVICE • CALIBRATION • REPAIRS 2340 SE 11TH Ave. Portland, Oregon 97214 • Box 14831 Portland, Oregon 97293 (503) 236-2712 • FAX (503) 235-2535 • www.qc-services.com

Antech Lab 501 N.E. Thompson Mill Rd. Corbett, OR 97019 Report Number: ANTL0150505744160322

A2LA ACCREDITED CERTIFICATE OF CALIBRATION WITH DATA

INSTRUMENT INFORMATION

Item	Make	Model	Serial Number	Customer ID	Location
Balance	Sartorius	BP210S	50505744	N/A	Lab
Units	Readability	SOP	Cal Date	Last Cal Date	Cal Due Date
g	0.0001	QC012	3/22/16	3/24/15	3/2017

FUNCTIONAL CHECKS

	ECCENTRICITY Test Wt: Tol:	LINEARITY Test Wt: Tol:	STANDARD DEVIATION Test Wt: Tol:	ENVIRONMENTAL CONDITIONS
	100 0.0003	50x4 0.0002	100 0.0001	
	As-Found:	As-Found:	1.100.0003 5.100.0004 9.100.0003	Good Fair Poor
-	Pass: ☑ Fail: □	Pass: ☑ Fail: □	2.100.0005 6.100.0002 10.100.0002	
	As-Left:	As-Left:	3.100.0004 7.100.0003 <u>Result</u> 4.100.0003 8.100.0002 0.00009	Temperature: 21.1°C
	Pass: 🗹 Fail: 🗖	Pass: ☑ Fail: □	4.100.0003 8.100.0002 0.00007	

	A2LA ACCREDITED S	ECTION OF REPORT -	
Standard	As-Found	As-Left	Expanded Uncertainty
200	200.0009	200.0006	0.00023
100	100.0006	100.0003	0.00 0 23
50	50,0003	50.0002	0.00023
10	10,0002	10.0000	0,00022
1	1.0000	1.0000	0.00022
0.1	0.1000	0.1000	0.00022

CALIBRATION STANDARDS

Item	Make	Model	Serial Number	Cal Date	Cal Due Date	NIST ID
Weight Set	Rice Lake	20 kg to 1mg	2831W	12/8/15	12/2016	20152429

Permanent Information Concerning this Equipment:

Comments/Info Concerning this Calibration:

Unit needs software repair for linearity and repeatability.

Report prepared/reviewed by: Colocation Date: 3/22/16

Technician: J. Colacchio

Signature:

THIS CERTIFICATE SHALL NOT BE REPRODUCED WITHOUT THE APPROVAL OF QUALITY CONTROL SERVICES, INC.

The uncertainty is calculated according to the ISO Guide to the Expression of Uncertainty in Measurement and includes the uncertainty of standards used combined with the observed standard deviation and readability of the unit under test. The uncertainty is expanded with a k factor of 2 for an approximate 95% level of confidence. Instruments listed above were calibrated using standards traceable to the National Institute of Standards and Technology (NIST). Calibration data reflect results at the time and location of calibration. Calibration data should be reviewed to insure that the instrument is performing to its required accuracy. Calibrations comply with ISO/IEC 17025 and ANSI/Z540-1-1994 quality standards.

Member: National Conference of Standards Laboratories and WEITHON THE RING 16-5702

Particulate Matte, Jhain of Custody

16 12400-06

	TD OC	r						, -	, , ,	
MON AIR QUAL	IROS	L :s			. *	•	Page: _	of		ı
Client: .aboratory:	<u>Bullsey</u> Antech				Montrose Jo	5702 5702	∑ Field	Personnel -	OF/JH/C	ol
·		Thompso Oregon 9	on Mill Road 7019		Antech Job N	No	Office	e Personnel		
			Front Acetoro Rinse	Back <u>Acerore</u> Rinse	Impinger H2O	Filter - Front		CPM Cont. 1	CPM Cont. 2	CPM Cont. 3
MF	THOD: 8	specify>>						EPA 202	EPA 202	EPA 202
Source		Test Date								·
T7 Inlet		4/27	1	ſ	<u> </u>	ł			, 2, 1	
II KIET	2	4/28	14	11	l v	,			_	
1,	3	4/29	- 1	(3	^\	1.				
	1 .	4/27	\ t	5.4	13.	V _C				
17 DOT 10	2	4/28	l i	٠.	t v	1 _				
:1	_3	4/29	. 1;		1.	N.,	!			
Blanks		4/28			, ,					
Field Train R										
Field Train P						1				
Return Samp	oles to Mo	ntrose AS	AP for Further	Analysis?	RUSI Norma	H_√_ Notes: al	38 +************************************	samples	. Please	Rush!
Relinguished b	ov: <u>//</u> .		· Min	Date/Time 5	1/2/16 11	23 Relinquis	shed by:	<u></u>	Date/Tim	ie
Received by:_		1 H	w	Date/Time 5	73 930	Received	i by:		Date/Tim	ne
l To: [/] Horizo 13585 Portlar	on Engineerin NE Whitaker and, OR 97230	Way	AmTest Air G 4150 'B' Place Auburn, WA S Phone: 253.4	Quality e NW, Suite 106 8001	The Avoga	adro Group e Roberts Circle	The Avog 13585 NE Portland, (Whitaker Way	11327 E	se Air Quality Ser E. Montgomery Bay e Valley, WA 99206
2285	ose Air Quali Deerfield Lane a, MT 89601		Other							

LABORATORY REPORT

May 18, 2016

Jason French Horizon Engineering, LLC 4150 'B' Place Northwest, Suite 106 Auburn, WA 98001

RE: Bullseye Glass / 5702

Dear Jason:

Enclosed are the results of the samples submitted to our laboratory on May 4, 2016. For your reference, these analyses have been assigned our service request number P1602318.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

Katt Aguilea By Kate Aguilera at 10:31 am, May 18, 2016

Kate Aguilera Project Manager Client:

Horizon Engineering, LLC

Service Request No:

P1602318

Bullseye Glass / 5702 Project:

CASE NARRATIVE

The samples were received intact under chain of custody on May 4, 2016 and were stored in accordance with the analytical method requirements. The samples were received past the recommended holding time for all of the analyses. The analyses were performed as soon as possible after receipt by the laboratory. The data is flagged to indicate the holding time exceedance. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Ethane and Propane Analysis

The samples were analyzed per modified EPA Method TO-3 for ethane and propane using a gas chromatograph equipped with a flame ionization detector (FID). This procedure is described in laboratory SOP VOA-TO3C1C6. This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP or AIHA-LAP accreditation.

Fixed Gases Analysis

The samples were also analyzed for fixed gases (oxygen, nitrogen, carbon monoxide, methane and carbon dioxide) according to modified EPA Method 3C (single injection) using a gas chromatograph equipped with a thermal conductivity detector (TCD). This procedure is described in laboratory SOP VOA-EPA3C. This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP or AlHA-LAP accreditation.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

ALS Environmental – Simi Valley

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
AIHA	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L15-398
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/labcert.htm	2014025
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	977273
New Jersey DEP (NELAP)	http://www.nj.gov/dep/oqa/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	4068-003
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 15-6
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01627201 5-5
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client:

Horizon Engineering, LLC

Project ID:

Bullseye Glass / 5702

Service Request: P1602318

Date Received:

5/4/2016

Time Received:

09:35

					fied - (
					TO-3 Modified
			Date	Time	10-3 N
Client Sample ID	Lab Code	Matrix	Collected	Collected	The state of the s
1-A	P1602318-001	Air	4/27/2016	00:00	
1-B	P1602318-002	Air	4/27/2016	00:00	X X
1-C	P1602318-003	Air	4/27/2016	00:00	
1-D	P1602318-004	Air	4/27/2016	00:00	X X
I-E secure accessors to the accessor of CPAC	P1602318-005	Air	4/27/2016	00:00	
1 -F	P1602318-006	Air	4/27/2016	00:00	X X X X
1-G	P1602318-007	Air	4/27/2016	00:00	X X
2-A	P1602318-008	Air Air	4/28/2016 4/28/2016	00;00 00:00	
2-B 2-C	P1602318-009 P1602318-010	Air	4/28/2016	00:00	$\ddot{\mathbf{x}}$ $\ddot{\mathbf{x}}$
2-D	P1602318-011	Air	4/28/2016	00:00	$\mathbf{x} - \mathbf{x}$
2-D 2-E	P1602318-011	Air	4/28/2016	00:00	$\mathbf{x} \cdot \mathbf{x}$
2-F	P1602318-013	Air	4/28/2016	00:00	$\mathbf{X} - \mathbf{X}$
3-A	P1602318-014	Air	4/29/2016	00:00	$\mathbf{X} = \mathbf{X}$
3-B	P1602318-015	Air	4/29/2016	00:00	X X
3-C	P1602318-016	Air	4/29/2016	00:00	XXX
3-D	P1602318-017	Air	4/29/2016	00:00	XXX
3-E	P1602318-018	Air	4/29/2016	00:00	X X

ALS

Air - Chain of Custody Record & Analytical Service Request

Requested Turnaround Time in Business Days (Surcharges) please-circle-

Page	Ţ	_ af	<u> </u>
------	---	------	----------

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161

	Fax (805) 52	6-7270		1 Day (100%) 2 Da	y (75%) 3 Day (50%	%) 4 Day (35%)	5 Day (25%) \10	Day-Stand			0150 ADI
Company Name & Address (Reporting	Information)	,., <u>-</u>		Project Name					ALS Contact	•	<u> </u>
Thomas Rhodes/Ho	rzon É	ngineenii	٧٩	BullSe	use Glas	5		,	Analysis	Method	1
(Some as Billing A	Adress)		~	Project Number	707					1	1
Droject Manager				P.O. # / Billing Infor							
Phone Sugar French	Fax		······································	1 7	5 NE Wh	itaker W	aus .				Comments e.g. Actual
503-255-505 ⁰	503-2	55-05	505	Por	Hard OR	9723	2			<u> </u>	Preservative o
Email Address for Result Reporting + rhades @ montros	א או אי פייי פי			Sampler (Print & Sign)	12/	100	nis Himson		- 30		specific instruction
+ 1 Kanes @ ward tos	Laboratory	Date	Time	Canister ID	Flow Controller ID	Canister	A Canister	 			
Client Sample ID	ID Number	Collected	Collected	(Bar code # - AC, SC, etc.)	(Barcode #- FC #)	Start Pressure "Hg	End Pressure "Hg/psig	Sample Volume			
IA-G		4/27	Various			proper a		1			
2A-F	1.	4/28	u						All B	298 a	wheel
3A-E		4/29	d		•				for		2/00/
				₹						1	1-71
						,	. 7		00/	CH4/	2 AU/
									Calla	onl	X
, h.,					:						
											١
						,					
	-					,			.,,,,		
											<u></u> .
, ·							· ·	<u> </u>			•
Reportier I - Results (Default if not specified) ier II (Results + 96 Summaries)		esults + QC & (Calibration Sur	maries) % Surcharge	EDD required ∴Ye	s / No Units:	-	Chain of C	Custody Seal; BROKEN		Project Requirem (MRLs, QAPP)
telinquished by: (Signature)		-	Date: 5/2/16	Time: 1200	Received by: (Signat	ture)			3/4/14	FRE	
Relinquished by: (Signature)	1		Date:	Time: .«	Received by: (Signal	407			Date:	7ime:	Cooler / Blank Temperature

α

ALS Environmental Sample Acceptance Check Form

	Horizon Engin		-			Work order:	P1602318			
	Bullseye Glass				D-4- 1	EIA ILC	L	יי זמעען	·C	
Sample	(s) received on:	5/4/16		J	Date opened:	5/4/16	by:	KKELP	E	
		samples received by ALS. Thermal preservation and p							lication o	of <u>N/A</u>
1	Were sample	containers properly m	arked with cli	ent sample ID	?				$\overline{\mathbf{x}}$	
2	-	ontainers arrive in goo		. 1					X	
3		f-custody papers used		?				X		
4		ontainer labels and/or			ers?				X	
5	_	olume received adequ						×		
-		vithin specified holding		.5.					\boxtimes	
6	-	-		f as alon at was	int adharad t	.00				×
7	Was proper te	mperature (thermal p	reservation) o	i cooler at rece	eipi adnered i	.0 !		ш	ليا	
8		seals on outside of co	oler/Box/Com	tainer?			Sealing Lid?		\boxtimes	
0	Were seals int	e and date included? act? ars have appropriate pr	ocometion 3	ecording to me	sthod/SOP or	Client specified i	nformation?			× ×
9	Is there a clie Were <u>VOA v</u>	its nave appropriate pr int indication that the si ials checked for preser it/method/SOP require	ubmitted samp nce/absence of	oles are pH pre f air bubbles?	eserved?					X X X
10	Tubes:	Are the tubes capp								X
		Are the badges pro			•					X
11	Badges:	*			r aannad and	Lintact?				\boxtimes
		Are dual bed badg	es separateu a	ilia iliatytanait	y capped and	i intact:		<u> </u>	<u> </u>	
	Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)		ipt / Preso Commen		l Establis
	8-001.01	5.0 L Tedlar Bag					·			
	8-002.01	5.0 L Tedlar Bag								
	8-003.01	5.0 L Tedlar Bag				 	<u> </u>			
	8-004.01	5.0 L Tedlar Bag					-			
	8-005.01	5.0 L Tedlar Bag								
	8-006.01	5.0 L Tedlar Bag					1			
	8-007.01	5.0 L Tedlar Bag								
3,	8-008.01	5.0 L Tedlar Bag					1			-
	8-009.01	5.0 L Tedlar Bag								
	8-010.01	5.0 L Tedlar Bag								
	8-011.01	5.0 L Tedlar Bag								
	8-012.01	5.0 L Tedlar Bag								
	8-013.01	5.0 L Tedlar Bag					1			
P160231 P160231	8-014.01 8-015.01	5.0 L Tedlar Bag 5.0 L Tedlar Bag			 		<u> </u>			
				I	t					
	in any discrepanc Custody is missin	cies: (include lab sample lag time collected	ID numbers):							

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

ALS Environmental Sample Acceptance Check Form

Client: Horizon Engineering, LLC	-	Work order:	P1602318	
Project: Bullseye Glass / 5702	 ******			
Sample(s) received on: 5/4/16	Γ	Date opened: 5/4/16	by:	KKELPE

Lab Sample ID	Container					
Lau Sample 119	Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	Receipt / Preservation Comments
P1602318-016.01	5.0 L Tedlar Bag					
P1602318-017.01	5,0 L Tedlar Bag					
P1602318-018.01	5.0 L Tedlar Bag					

*****		*****				
	····					
	9					
	V					
		ļ				
		l				

Explain any discrepancies: (include lab sample ID numbers): _			
-	 		
	 	·····	
· · · · · · · · · · · · · · · · · · ·	 ···	·	

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 1-A

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-001

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Test Notes:

Н3

Date Collected: 4/27/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
7782-44-7	Oxygen*	21.7	0.10	
7727-37 - 9	Nitrogen	77.2	0.10	
630-08-0	Carbon Monoxide	ND ·	0.10	
124-38-9	Carbon Dioxide	1.16	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client: Horizon Engineering, LLC

Client Sample ID: 1-B

ALS Project ID: P1602318 Client Project 1D: Bullseye Glass / 5702 ALS Sample ID: P1602318-002

Test Code:

EPA Method 3C Modified

Instrument ID: Analyst:

HP5890 II/GC1/TCD

Sample Type:

Wade Henton 5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/27/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
7782-44-7	Oxygen*	21.5	0.10	
7727-37-9	Nitrogen	76.9	0.10	
630-08-0	Carbon Monoxide	ND	0.10	e e
124-38-9	Carbon Dioxide	1.56	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 1-C

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-003

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/27/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound	Result	MRL	Data
	•	%, v/v	%, v/v	Qualifier
7782-44-7	Oxygen*	21.3	0.10	
7727-37-9	Nitrogen	76.7	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
124-38-9	Carbon Dioxide	2.01	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 1-D

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-004

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/27/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
7782-44-7	Oxygen*	21.4	0.10	
7727-37-9	Nitrogen	76.8	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
124-38-9	Carbon Dioxide	1.81	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 1-E

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-005

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/27/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound	Result %, v/v	MRL %, v/v	Data Qualifier
7782-44-7	Oxygen*	21.6	0.10	
7727-37-9	Nitrogen	77.3	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
124-38-9	Carbon Dioxide	1.12	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 1-F

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-006

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Test Notes:

Н3

Date Collected: 4/27/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
7782-44-7	Oxygen*	21.6	0.10	
7727-37-9	Nitrogen	77.3	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
124-38-9	Carbon Dioxide	1.11	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 1-G

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-007

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

Wade Henton 5.0 L Tedlar Bag

Sample Type: Test Notes:

H3

Date Collected: 4/27/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
7782-44-7	Oxygen*	21.7	0,10	
7727-37-9	Nitrogen	77.4	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
124-38-9	Carbon Dioxide	0.874	0,10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 2-A

2-A

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-008

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Test Notes:

Н3

Date Received:	5/4/16
Date Analyzed:	5/4/16
Volume(s) Analyzed:	0.10 ml(s)

Date Collected: 4/28/16

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
7782-44-7	Oxygen*	21.3	0.10	
7727-37-9	Nitrogen	76.5	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
124-38-9	Carbou Dioxide	2.11	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 2-B

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-009

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Test Notes:

Date Collected: 4/28/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound		Result %, v/v	MRL %, v/v	Data Qualifier
7782-44-7	Oxygen*		21.5	0.10	
7727-37-9	Nitrogen		77.0	0.10	
630-08-0	Carbon Monoxide		ND	0.10	
124-38-9	Carbon Dioxide	<u> </u>	1.55	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

* = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 2-C

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-010

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/28/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound	Result	MRL	Data
	·	%, v/v	%, v/v	Qualifier
7782-44-7	Oxygen*	21.4	0.10	
772 7- 37-9	Nitrogen	76.7	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
124-38-9	Carbon Dioxide	1.80	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client: Horizon Eng

Horizon Engineering, LLC

Client Sample ID: 2-D Client Project ID: Bullseye Glass / 5702 ALS Project ID: P1602318

ALS Sample ID: P1602318-011

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst: Sample Type: Wade Henton 5.0 L Tedlar Bag

Test Notes:

Н3

Date Collected: 4/28/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound	Result %, v/v	MRL %, v/v	Data Qualifier
7782-44-7	Oxygen*	21.6	0.10	
7727-37-9	Nitrogen	77.2	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
124-38-9	Carbon Dioxide	1.23	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

* = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 2-E

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-012

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/28/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
7782-44-7	Oxygen*	21.6	0.10	
772 7-37- 9	Nitrogen	77.2	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
124-38-9	Carbon Dioxide	1.18	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 2-F

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-013

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/28/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound		Result	MRL	Data Qualifier
		 	%, v/v	%, v/v	Quanner
7782-44-7	Oxygen*		21.7	0.10	
7727-37-9	Nitrogen		77.4	0.10	
630-08-0	Carbon Monoxide		ND	0.10	
124-38-9	Carbon Dioxide		0.900	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 3-A

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-014

Test Code:

EPA Method 3C Modified

HP5890 II/GC1/TCD

Instrument ID: Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/29/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
7782-44-7	Oxygen*	21.4	0.10	
7727-37-9	Nitrogen	76.7	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
124-38-9	Carbon Dioxide	1.88	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 3-B

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-015

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 Ⅱ/GC1/TCD

Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/29/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound	Result %, v/v	MRL %, v/v	Data Qualifier
7782-44-7	Oxygen*	22.0	0.10	,
7727-37-9	Nitrogen	77.9	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
124-38-9	Carbon Dioxide	ND	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 3-C

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

Date Collected: 4/29/16

Date Received: 5/4/16

Date Analyzed: 5/4/16

ALS Sample ID: P1602318-016

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Volume(s) Analyzed:

0.10 ml(s)

Test Notes:

Н3

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
7782-44-7	Oxygen*	22.0	0.10	
7727-37-9	Nitrogen	77.7	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
124-38-9	Carbon Dioxide	0.331	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 3-D

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-017

Test Code: Instrument ID: EPA Method 3C Modified

HP5890 II/GC1/TCD

Analyst: Sample Type: Wade Henton 5.0 L Tedlar Bag

Test Notes:

Н3

Date Collected: 4/29/16

Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound	Result %, v/v	MRL %, v/v	Data Qualifier
7782-44-7	Oxygeu*	21.4	0.10	
7727-37-9	Nitrogen	77.0	0.10	
630-08-0	Carbon Monoxide	ND ·	0.10	
124-38-9	Carbon Dioxide	1.50	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 3-E

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-018

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/29/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

0.10 ml(s)

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
7782-44-7	Oxygen*	21.5	0.10	
7727-37-9	Nitrogen	77.1	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
124-38-9	Carbon Dioxide	1.35	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: Method Blank

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

Date Collected: NA

Date Received: NA

ALS Sample ID: P160504-MB

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

Wade Henton

Sample Type:

5.0 L Tedlar Bag

Date Analyzed: 5/04/16 Volume(s) Analyzed:

0.10 ml(s)

Test Notes:

CAS#	Compound	Result %, v/v	MRL %, v/v	Data Qualifier_
7782-44-7	Oxygen*	ND	0.10	
7727-37-9	Nitrogen	ND	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
124-38-9	Carbon Dioxide	ND	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: Lab Control Sample Client Project ID: Bullseye Glass / 5702 ALS Project ID: P1602318

ALS Sample ID: P160504-LCS

Test Code:

EPA Method 3C Modified

Instrument ID:

HP5890 II/GC1/TCD

Analyst:

124-38-9

Wade Henton

Sample Type: Test Notes:

5.0 L Tedlar Bag

Carbon Dioxide

Date Collected: NA

Date Received: NA Date Analyzed: 5/04/16

Volume(s) Analyzed:

103

NA ml(s)

84-117

CAS#	Compound	Spike Amount ppmV	Result ppmV	% Recovery	ALS Acceptance Limits	Data Qualifier
7782-44-7	Oxygen*	25,000	26,500	106	84-121	
7727-37 - 9	Nitrogen	50,000	52,200	104	88-122	
630-08-0	Carbon Monoxide	50,000	53,000	106	87-118	

51,600

50,000

^{* =} The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 1-A

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

Date Collected: 4/27/16

Date Received: 5/4/16

Date Analyzed: 5/4/16

ALS Sample ID: P1602318-001

Test Code:

EPA TO-3 Modified

Instrument ID:

HP5890 II/GC8/FID

Analyst:

Adam McAfee

Sampling Media:

5.0 L Tedlar Bag

Volume(s) Analyzed:

1.0 ml(s)

Test Notes:

H3

Compound	Result	MRL	Data
	ppmV	ppınV	Qualifier
Methane	3.8	0.50	
Ethane	ND	0.50	
Propane	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 1-B

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-002

Test Code:

Analyst:

Test Notes:

Instrument ID:

EPA TO-3 Modified

HP5890 II/GC8/FID Adam McAfee

Sampling Media:

5.0 L Tedlar Bag

H3

Date Collected: 4/27/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

1.0 ml(s)

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
Methane	5.3	0.50	
Ethane	ND	0.50	
Propane	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client: Horizon Engineering, LLC

Client Sample ID: 1-C

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-003

Test Code:

EPA TO-3 Modified

Instrument ID:

HP5890 II/GC8/FID

Analyst:

Adam McAfee

Sampling Media:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/27/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

1.0 ml(s)

Compound	Result	MRL	Data
•	\mathbf{ppmV}	ppmV	Qualifier
Methane	5.5	0.50	
Ethane	ND	0.50	
Propane	ND	0,50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 1-D

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-004

Test Code:

EPA TO-3 Modified HP5890 II/GC8/FID

Instrument ID: Analyst:

Adam McAfee

Sampling Media:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected:	4/27/16
Date Received:	5/4/16
Date Analyzed:	5/4/16

Volume(s) Analyzed:

1.0 ml(s)

Compound		Result	MRL	Data
		ppmV	ppmV	Qualifier
Methane	,	6.0	0.50	
Ethane		ND	0.50	
Propane		ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 1-E

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-005

Test Code:

EPA TO-3 Modified

Instrument ID:

Analyst: Sampling Media:

5.0 L Tedlar Bag

HP5890 II/GC8/FID Adam McAfee

Test Notes:

H3

Date Collected: 4/27/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

1.0 ml(s)

Compound	Result ppmV	MRL ppmV	Data Qualifier
Methane	6.6	0.50	
Ethane	ND	0.50	
Propane	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 1-F

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-006

Test Code: Instrument ID:

EPA TO-3 Modified HP5890 II/GC8/FID

Analyst:

Adam McAfee 5.0 L Tedlar Bag

Sampling Media: Test Notes:

H3

Date Collected: 4/27/16 Date Received: 5/4/16 Date Analyzed: 5/4/16

Volume(s) Analyzed:

1.0 ml(s)

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
Methane	4.6	0.50	
Ethane	ND	0.50	
Propane	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 1-G

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-007

Test Code:

EPA TO-3 Modified

Instrument ID:

HP5890 II/GC8/FID

Analyst:

Adam McAfee

Sampling Media:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/27/16 Date Received: 5/4/16 Date Analyzed: 5/5/16

Volume(s) Analyzed:

1.0 ml(s)

Compound	Result ppmV	MRL ppmV	Data Qualifier
Methane	3.7	0.50	
Ethane	ND	0.50	
Propane	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 2-A

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-008

Test Code:

Analyst:

Instrument ID:

EPA TO-3 Modified

HP5890 II/GC8/FID Adam McAfee

Sampling Media:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/28/16 Date Received: 5/4/16 Date Analyzed: 5/5/16

Volume(s) Analyzed:

 $1.0 \, \text{ml}(s)$

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
Methane	4.2	0.50	
Ethane	ND	0.50	
Propane	ND ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 2-B

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-009

Test Code:

EPA TO-3 Modified

Instrument ID:

HP5890 II/GC8/FID Adam McAfee

Analyst: Sampling Media:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/28/16 Date Received: 5/4/16 Date Analyzed: 5/5/16

Volume(s) Analyzed:

1.0 ml(s)

Compound	Result ppmV	MRL ppmV	Data Qualifier
Methane	4.6	0.50	
Ethane	ND	0.50	
Propane	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 2-C

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-010

Test Code:

EPA TO-3 Modified

Instrument ID: Analyst:

HP5890 II/GC8/FID Adam McAfee

Sampling Media:

5.0 L Tedlar Bag

Test Notes:

Н3

Date Collected: 4/28/16 Date Received: 5/4/16 Date Analyzed: 5/5/16

Volume(s) Analyzed:

 $1.0 \, ml(s)$

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
Methane	5.7	0.50	
Ethane	ND	0.50	
Propane	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 2-D

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-011

Test Code:

EPA TO-3 Modified

Instrument ID:

HP5890 II/GC8/FID

Analyst: Sampling Media: Adam McAfee 5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/28/16

Date Received: 5/4/16 Date Analyzed: 5/5/16

Volume(s) Analyzed:

1.0 ml(s)

Compound	Result ppmV	MRL ppmV	Data Qualifier
Methane	4.7	0.50	
Ethane	·ND	0.50	
Propane	ND_	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 2-E

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-012

Test Code:

EPA TO-3 Modified

Instrument ID:

HP5890 II/GC8/FID

Analyst: Sampling Media: Adam McAfee 5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/28/16

Date Received: 5/4/16 Date Analyzed: 5/5/16

Volume(s) Analyzed:

1.0 ml(s)

Compound	Result	MRL	Data
	$ ho ext{ppmV}$	ppmV	Qualifier
Methane	4.2	0.50	
Ethane	ND	0.50	
Propane	ND ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 2-F

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-013

Test Code:

EPA TO-3 Modified HP5890 II/GC8/FID

Instrument ID: Analyst:

Adam McAfee

Sampling Media:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/28/16 Date Received: 5/4/16 Date Analyzed: 5/5/16

Volume(s) Analyzed:

1.0 ml(s)

Compound	Result ppmV	MRL ppmV	Data Qualifier
Methane	4.0	0.50	
Ethane	ND	0.50	
Propane	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 3-A

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-014

Test Code: Instrument ID:

Analyst:

EPA TO-3 Modified HP5890 II/GC8/FID

Adam McAfee

Sampling Media:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/29/16 Date Received: 5/4/16 Date Analyzed: 5/5/16

Volume(s) Analyzed:

1.0 ml(s)

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
Methane	4.3	0.50	
Ethane	ND	0.50	
Propane	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 3-B

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-015

Test Code:

EPA TO-3 Modified

Instrument ID:

HP5890 II/GC8/FID Adam McAfee

Analyst: Sampling Media:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/29/16 Date Received: 5/4/16

Date Analyzed: 5/5/16 Volume(s) Analyzed:

1.0 ml(s)

Compound		Result ppmV	MRL ppmV	Data Qualifier
Methane		2.7	0.50	
Ethane		ND	0.50	
Propane	·	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 3-C

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-016

Test Code:

EPA TO-3 Modified

Instrument ID: Analyst:

HP5890 II/GC8/FID

Sampling Media:

Adam McAfee 5.0 L Tedlar Bag

Test Notes:

Н3

Date Collected: 4/29/16

Date Received: 5/4/16 Date Analyzed: 5/5/16

Volume(s) Analyzed:

1.0 ml(s)

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
Methane	3.0	0.50	
Ethane	ND	0,50	
Propane	ND	0.50	•

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 3-D

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-017

Test Code:

EPA TO-3 Modified

Instrument ID:

HP5890 II/GC8/FID

Analyst:

Adam McAfee

Sampling Media:

5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/29/16 Date Received: 5/4/16 Date Analyzed: 5/5/16

Volume(s) Analyzed:

1.0 ml(s)

Compound	Result ppmV	MRL ppmV	Data Qualifier
Methane	4.0	0.50	
Ethane	ND	0.50	
Propane	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: 3-E

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P1602318-018

Test Code:

Instrument ID:

EPA TO-3 Modified HP5890 II/GC8/FID

Analyst: Sampling Media: Adam McAfee 5.0 L Tedlar Bag

Test Notes:

H3

Date Collected: 4/29/16 Date Received: 5/4/16 Date Analyzed: 5/5/16

Volume(s) Analyzed:

 $1.0 \, \text{ml(s)}$

Compound	Result	MRL	Data
	ppmV	ppınV	Qualifier
Methane	3.8	0.50	
Ethane	ND	0.50	
Propane	ND ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. H3 = Sample was received and analyzed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: Method Blank

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P160504-MB

Test Code:

· EPA TO-3 Modified

Instrument ID:

HP5890 II/GC8/FID

Analyst:

Adam McAfee

Sampling Media:

5.0 L Tedlar Bag

Test Notes:

Date Collected: NA

Date Received: NA

Date Analyzed: 5/04/16 Volume(s) Analyzed:

1.0 ml(s)

Сотроли	Result ppmV	MRL ppmV	Data Qualifier
Methane	ND	0.50	
Ethane	ND	0.50	
Propane	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: Method Blank

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P160505-MB

Test Code:

EPA TO-3 Modified

Instrument ID:

HP5890 II/GC8/FID

Analyst: Sampling Media:

Adam McAfee 5.0 L Tedlar Bag Date Collected: NA

Date Received: NA Date Analyzed: 5/05/16

Volume(s) Analyzed:

1.0 ml(s)

Test Notes:

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
Methane	ND	0.50	
Ethane	ND	0.50	
Propane	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: Method Blank

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

Date Collected: NA

Date Received: NA

ALS Sample ID: P160505-MB

Test Code:

EPA TO-3 Modified

Instrument ID: Analyst:

HP5890 II/GC8/FID Adam McAfee

Sampling Media:

5.0 L Tedlar Bag

Date Analyzed: 5/05/16 Volume(s) Analyzed:

1.0 ml(s)

Test Notes:

Compound	Result	MRL	Data
	ppmV	ppmV	Qualifier
Methane	ND	0.50	
Ethane	ND	0.50	
Propane	ND	0.50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: Lab Control Sample

ALS Project ID: P1602318

Client Project ID: Bullseye Glass / 5702

ALS Sample ID: P160504-LCS

Test Code:

EPA TO-3 Modified HP5890 II/GC8/FID

Date Collected: NA

Date Received: NA Date Analyzed: 5/04/16

Instrument ID: Analyst:

Adam McAfee 5.0 L Tedlar Bag

Volume(s) Analyzed:

NA ml(s)

Sampling Media:

Test Notes:

Compound	Spike Amount ppmV	Result ppmV	% Recovery	ALS Acceptance Limits	Data Qualifier
Methane	1,020	1,010	99	83-107	
Ethane	1,010	1,040	103	77-111	
Propane	1 010	1.100	109	78-110	

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: Lab Control Sample

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P160505-LCS

Test Code:

EPA TO-3 Modified

Instrument ID:

HP5890 II/GC8/FID Adam McAfee

Analyst: Sampling Media:

5.0 L Tedlar Bag

Test Notes:

Date Collected: NA

Date Received: NA Date Analyzed: 5/05/16

Volume(s) Analyzed:

NA ml(s)

Compound	Spike Amount	Result ppmV	% Recovery	ALS Acceptance Limits	Data Qualifier
Methane	1,020	945	93	83-107	
Ethane	1,010	974	96	77-111	
Propane	1,010	1,020	101	78-110	

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client:

Horizon Engineering, LLC

Client Sample ID: Lab Control Sample

Client Project ID: Bullseye Glass / 5702

ALS Project ID: P1602318

ALS Sample ID: P160505-LCS

Test Code:

EPA TO-3 Modified

Instrument ID:

HP5890 II/GC8/FID

Analyst: Sampling Media:

5.0 L Tedlar Bag

Test Notes:

Adam McAfee

Date Analyzed: 5/05/16 Volume(s) Analyzed:

Date Collected: NA

Date Received: NA

NA ml(s)

				ALS	
Compound	Spike Amount	Result	% Recovery	Acceptance	Data
	ppmV	ppmV		Limits	Qualifier
Methane	1,020	1,010	99	83-107	
Ethane	1,010	1,040	103	77-111	
Propane	1,010	1,090	108	78-110	

Traverse Point Locations

BULLSEYE GLASS FURNACE T7-OUTLET PORTLAND OR 4/26 - 4/29 2016 PT,BS,JH,MV,JF

mew

•			EAS	ST			mov	
Outer Circumference	Co	in						
Wall thickness	t	in						
		•				Nown Street	eam	
INSIDE of FAR WALL	F	in	14.	13				nce
to OUTSIDE of Nipple		_						***************************************
INSIDE of NEAR WALL	N	in	1.6	25	A		Port	-
to OUTSIDE of Nipple						_ Ds	L	
STACK WALL to	N-t	in			-	F		Co
to OUTSIDE of Nipple					1			¥ 0
DOWNstream Disturb		in		.0				OI
UPstream Disturb	В	m	39			4.2		
Inner Diameter		in .		2.5	В			V
Area	As	sqin	122		i	\blacksquare \blacksquare	I ƹ	
DOWNstream Ratio	A/Ds			56		Flow		
UPstream Ratio	B/Ds		3.	16		1.104		
				2.4				
Minimum #Pts (Particulate)				24 12		/	— √ ←Disturba	nce
Minimum #Pts/Diameter	4.5			12 16	,	/ /	\	
Minimum #Pts (NON-Particula	ate)			8	/	Up Stream	\	
Minimum #Pts/Diameter				0 12		Op sucan	\	
Actual Points per Diameter				12				
Actual Points Used Trav	Fract	Stack	Actual	Neare	et	Adjusted	Traverse	Traverse
Pt	Stk ID	ID	Points	8ths	Si	Points	Points	Points
#No	(f)	(Ds)	(Dsxf)	(TP)		(TP)	(TP + N)	(TP + N)
#INU	(1)	(123)	(DSAI)	(11)		()	(<u> </u>
1	2.13%	12.5	().3	0.25	0.5	2.125	2 1 /
2	6.70%).8	0.875	0.875		2 1 /
3	11.81%			1.5	1.5	1.5	3.125	3 1 /
4	17.73%			2.2	2.25	2.25	3.875	3 7 /
5	25.00%			3.1	3.125	3.125	4.75	4 3 /
6	35.57%			1,4	4.5	4.5	6.125	6 1 /
7	64.43%		;	3.1	8	8	9.625	9 5 /
8	75.00%	12.5	(9 .4	9.375			11
9	82.27%	12.5	10).3	10.25	10.25	11.875	11 7 /
10	88.19%	12.5	1	0.1	11	11	12.625	12 5 /
11	93.30%	12.5	1	1.7	11.625			13 1 /
12	97.87%	12.5	12	2.2	12.25	12	13.625	13 5 /

Traverse Point Locations

BULLSEYE GLASS FURNACE T7-OUTLET PORTLAND OR 4/26 - 4/29 2016 РТ,ВЅ,ЈН,МV,ЈF

mew

			χ	WEST			mew	
Outer Circumference	Со	in	<u> </u>	,, 251		14.		
Wall thickness	t	in						
						▶ Down Str	ream	
INSIDE of FAR WALL	F	in		13.88			— Disturba	mce
to OUTSIDE of Nipple							Dinaso	II.CO
INSIDE of NEAR WALL	N	in		1.625	A	[Port	
to OUTSIDE of Nipple						D-		
STACK WALL to	N-t	in			-	Ds	N }	
to OUTSIDE of Nipple						Г	S -amandanana-am	1/00
DOWNstream Disturb	Α	in		57.0		*		a
UPstream Disturb	В	in		39.5				
Inner Diameter	Ds	in		12.25	В	200		
Area	As	sqin		117.9	T)	1	l Xt	
DOWNstream Ratio	A/Ds			4.65				
UPstream Ratio	B/Ds			3.22		Flow		
Minimum #Pts (Particulate)				24				
Minimum #Pts/Diameter				24 12	<u>l</u>	/	— ← Disturba	mce
Minimum #Pts (NON-Particu	lata)			16	,	/)	\	
Minimum #Pts/Diameter	nate)			8	/	Up Stream	\	
Actual Points per Diameter				12	/	ор эцеан	\	
Actual Points Used				14		<u>/</u>		
Trav	Fract	Stack	Actual	Near	et	Adjusted	Traverse	Traverse
Pt	Stk ID	D	Points	8ths	231	Points	Points	Points
#No	(f)	(Ds)	(Dsxf)	(TP)		(TP)	(TP + N)	(TP + N)
77.10	(1)	(23)	(D3AI)	(11)		(11)	(11 111)	(II + IN) .
1	2.13%	12.3		0.3	0.25	0.5	2.125	2 1 / 8
2	6.70%	12.3		0.8	0.875	0.875	2.5	2 1 / 2
3	11.81%	12.3		1.4	1.5	1.5		3 1 / 8
4	17.73%	12.3		2.2	2.125	2.125	3.75	3 3 / 4
5	25.00%	12.3		3.1	3.125	3.125	4.75	4 3 / 4
6	35.57%	12.3		4.4	4.375	4.375	6	6
7	64.43%	12.3		7.9	7.875	7.875	9.5	9 1 / 2
8	75.00%	12.3		9.2	9.25	9.25	10.875	10 7 / 8
9	82.27%	12.3		10.1	10.125	10.125	11.75	11 3 / 4
10	88.19%	12.3		10.8	10.75	10.75	12.375	12 3 / 8
11	93.30%	12.3		11.4	11.375	11.375	13	13
12	97.87%	12.3		12.0	12	11.75	13.375	13 3 / 8

EPA METHOD 1
TRAVERSE POINT LOCATIONS

TRAVER	RSE POINT LOCAT	IQNS	
Client: Bullseye Glass	Facility Location:	Populanel	OR_
Source: T-7 Banghouse outled	Sample Location:	<u>ROOF</u>	
Date: 6/h/16	Initials:	(a)	
		Botto	IM T

Traverse Point Number	Traverse Point Location (inches)
1	21/8
2	21/2
3	3 1/8
4	33/4
5	43/4
6	6
7	9/2
8	1078
9	113/4
10	123/8
11	13
12	13 3/8
	٠

Duct Dimensions and Port Locations $ otin W$
Inside of far wall to outside of nipple, F 1413 1376
Inside of near wall to outside of nipple, N 15/2 15/3
Nearest downstream disturbance, A 57
Nearest upstream disturbance, B 39 1/2
Circular: Inside Diameter, F-N 121/2 121/4
Rectangular: Width" Depth"
Rectangular Equiv. Diameter: (2*W*D)/(W+D)"
Number of Ports: 2
Duct characteristics:
Construction: Steel PVC Fiberglas Other
Shape: Circular Rectangular Elliptical
Orientation: Vertical Horizontal Diagonal (~ angle:o)
Flow straighteners: Yes No
Stack Extension: Yes No
Cyclonic Flow Expected: Yes (No)
Cyclonic Flow Measured & Documented: (es) No
Average Null Angle <20°: Yes No N/A
Meets EPA M-1 Criteria: Yes No (If "No", explain why)

Test port sketch or comments		
		. •••

13585 NE Whitzker Way Portland, OR 97230 Phone (503) 255-5050 Fax (503) 255-0505 www.montrose-env.com

Cyclonic Flow Measurement

	Run(s):_	· N	14-			Client:	Bulleage	er 61955		Date: _	7/26/16
	Time:	145]			Source:		NATIONAL PROPERTY.	Facility	/ Location: _	Portland, OR
	-	\\\	· · · · · ·		Sam	pie Location:	4-3		116	Operator:	<u>BS</u>
							3-6	70,6	,135116 M	agnehelic:	
			Null angles	measured fro	om horizonta	ıÍ		AND C		•	B& 513/16
						man er		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
	Dout	T	Note Amelia	Direction	90° from	Direction of Rotation		EXAMPLES:			•
	Port	Traverse Point	Null Angle $(\Delta p = 0)$	of Rotation (CW or CCW)	Null Angle	(CW or CCW)	Δp	EXAMIL EEO.		•	
	NW	1	(Zp = 0)	(CVV OI CCVV)	rtan zaigio	(611010811)				1	Near side of stack
	1000	2	0		<u> </u>						
		3	0 *				-		4		Direction
		4	0								Null Angle of Rotation
		5	0]				1/_	,	$(\Delta p = 0) (CW \text{ or } CCW)$
		6	0		: .				1 <<	Null-angle	72 CCW
		7	0			-					Direction 90° from of Rotation
		8 9		<u> </u>				*****	' l 'Direction of flow t	rom right	Null Angle (CW or CCW)
		10	0	1			-		ive side of pitot or		18 CW
		11	0					-			<u></u>
픗		12	0						-	,	
<u>×</u>	NE	.1	0							1.	
ZC		2	0								Far side of stack
ž		3	O .			ļ		*****Direction o			Direction Null Angle of Rotation
E		4 5	<u>D</u>					positive side of	hiror ou ieir		$(\Delta p = 0)$ (CW or CCW)
<u>G</u>		6	0					1 ' 1	\\	→	76 CW
Z H		7	0	-				Null angle >>		-	Dîrection
П		8	0							i	90° from of Rotation
Ĩ		9	Ð]. (\		Null Angle (CW or CCW)
G		10	0						<u> </u>		14 CCW
HORIZON ENGINEERING 16-5702		11	0	1		ļ			1		
·57		12	0.			<u> </u>]			
02		Average	0	_				· L			

Production/Process Data

Raw Material Information

Amount of total chromium in the batch (lbs)

Type and quantity of material being processed

Weight of finished product (lbs)

Weight of charges during each batch (lbs)

Batch tickets providing this information was provided to DEQ prior to testing and no changes to the approved formulations were made. Glass formulation information is Confidential Business information.

Bag House purging cycle - Note: All Purging cycles to be done in low fire

;				BH DP inWC		Close Pm and close slide		Cycles	(1	Open Pm and Open slide gate (set to last	Reset Hz	BH DP	
	,			Magnahelic		gate (note location)and	Hz @ purge	cycle = 4		location) and clamp	to orignal	inWC	┦
ate		Оху%		pre - purge		clamp damper door	cycle	pulses)		damper door	_	Magnehelic	Notes
4/24/2016	8:55	980	515	5.5/4.8	45	open PM/close DD	60	5min		Close PM/open		5.1/4.5	
4/24/2016	9:40	707	670	5.5/4.7	45	open PM/close DD	60	10min		Close PM/open	· · · · · · · · · · · · · · · · · · ·	5.2/4.5	
	11:15p			5.5/4.8	45	open PM/close DD	60	10min		Close PM/open		5.2/4.5	
4/25/2016		920	488	6.8/6.1	50	open PM/close DD		10min		Close PM/open	 	6.4/5.6	
4/25/2016	500a	535	280	7/6.3	50	open PM/close DD	60	10min		Close PM/open		6.5/5.6	
4/25/2016	110p	433	227	5.9/5.4	45	open PM/close DD	60	10min		Close PM/open		5.5/4.7	
4/25/2016	140p	422	230	5.7/4.9	45	open PM/close DD		15min		Close PM/open		5.5/4.8	
4/25/2016	5 1 5p	522	275	5.9/5.	45	open PM/close DD		15min		Close PM/open		5.5/4.9	
4/25/2016	905p	977	514	6.7/6.1	50	open PM/close DD		15min		Close PM/open		6.5/5.7	
4/26/2016	215a	807	426	5.8/5.3		open PM/close DD		10min		Close PM/open		5.5/4.9	
4/26/2016	600a	526	274	5.9/5.4	45	open PM/close DD		10min		Close PM/open		5.7/5.0	
4/26/2016	130p	296	157	6.0/5.5		open PM/close DD		10min		Close PM/open		5.4/4.8	
4/26/2016	315p	598	314	5.5/5.		open PM/close DD		15min		Close PM/open		5.4/4.9	
4/26/2016	430p	498	262	5.5/4.9		open PM/close DD		15min		Close PM/open		5.1/4.7	
4/26/2016	1040p	978	515	6.6/6.2		open PM/close DD		15min		Close PM/open		6/5.4	lowered to 45 hz. Mag 5.1/4.8
4/27/2016	250a	295	154	4.8/4.3		open PM/close DD		5min		Close PM/open		4.5/4.1	10We1ed to 45 112. Wag 5.1/4.8
4/27/2016	1130a	297	154	4.8/4.4		open PM/close DD		10min		close PM/open		4.6/4.1	
4/27/2016	1215p	297	158	4.7/4.1		open PM/close DD		10min		Close PM/open		4.6/4.1	
4/27	335p	578	309	4.9/4.3		open PM/close DD		15min		Close PM/open		4.5/4.	
4/27	435p	294	155	4.5/4.1		open PM/close DD		10min		Close PM/open		4.4/4	
4/27	10:40p	294	155	5.5/6.		open PM/close DD		15min		Close PM/open			lowered to 45 by Man 5 1/4 5
4/28	215a	294		4.8/4.4		open PM/close DD		5min		Close PM/open		4.7/4.3	lowered to 45 hz. Mag 5.1/4.8
4/28	1145am	293		5.0/5.8		open PM/close DD		10min		Close PM/open		4.8/4.4	
4/28	1215pm	296		1.8/4.4		open PM/close DD		10min		Close PM/open		4.8/4.4	
4/28	4:00p	574		5.5/4.9		open PM/close DD		15min	_	Close PM/open		4.5/4.2	
4/28	9:50p	291		7.1/6.6		open PM/close DD		15min		Close PM/open		6.5/6	
4/29	155	291		7.1/6.7		open PM/close DD	30	7311111		Close PM/open		6.7/6.2	
5/1	845p	288		3.1/7.6		open PM/close DD	30			Close PM/open		7.6/6.7	
	1200p	288		1.9/4.6		open PM/close DD	30			Close PM/open		4.5/4	
5/2	2:30	561		5.5/5.2		open PM/close DD	30		_	Close PM/open			
5/2	830p	535	429			open PM/close DD	30			Close PM/open		4.5/4.6 5.5/5	

		····	1	· ·	Т			· · · · · · · · · · · · · · · · · · ·		T		Stack	I	PM	1	
				İ			Diverter					damper	Air dump	damper		
			l .			Ambient	valve	12" inlet	Bag H.	Ì		door	position -	Position -	Furnace	Magnahel
Conditions:	Date	Time	Qxy CFH	Gas CFH	Furn. Temp		Temp	Temp	temp	VFD Hertz	Damper set %	position	o/c	O/C	door - O/C	
Setup	4/26															
At temp	4/26	5:25pm	478	258	2499	71	107	121	123	45	18	apen	closed	closed	closed	5.5/4.9
Charge	4/26	5:30pm	292	154	2417	71	164	201	161	45	25/12.5	open	closed	ореп	<u> </u>	5.5/5
Recover	4/26	5:50pm	977	516	2344	72	192	197	159	45	17	open	closed	closed	closed	5.5/5
At temp	4/26	6:10pm	973	516	2460	73	214	216	186	45	19	open	closed	closed	closed	5.5/4.9
Charge	4/26	6:15pm	238	154	2385	72	234	261	210	45	25/12.5	open	closed	ореп	open	5.4/4.9
Recover	4/26	6:30pm	989	518	2324	72	200	202	179	45	14	open	closed	closed	closed	5.5/4.9
At temp	4/26	7:10pm	983	515	2487	74	205	N/A	204	45	28	open	closed	closed	closed	5.4/4.9
Charge	4/26	7:15pm	294	155	2403	74	207	N/A	203	45	25/12.5	open	closed	open	open	5.4/5
Recover	4/26	7:25pm	982	514	2353	73	189	N/A	184	45	23	open	closed	closed	closed	5.5/5.1
At temp	4/26	8:25pm	715	372	2498	72	169	N/A	188	45	27	open	closed	closed	closed	5.4/5
Charge	4/26	8:30pm	297	156	2418	72	209	N/A	201	45	25/12.5	open	closed	open	open	5.5/5.1
Recover	4/26	8:50pm	981	517	2351	72.	198	N/A	187	45	30	open	closed	closed	closed	5.6/5.2
		9:05p							216	47.5						ĺ
		9:17pm							210	50						
At temp	4/26	9:55pm	509	269	2500	72	112	N/A	144	50	16	open	closed	closed	closed	6.8/6.3
Charge	4/26	10:00pm	296	156	2411	72	182	N/A	177	50	25/12.5	open	closed	open	open	6.9/6.4
Recover	4/26	10:20pm	971	513	2358	- 73	156	N/A	167	50	30	ореп	closed	closed		6.9/6.4
	.,,											, , , , , , , , , , , , , , , , , , , ,		ļ		
		11:40pm			2487				1	45						5.1/4.8
At temp	4/26	11:25 PM	531	284	2500	71	120	N/A	152	45	16.8	open	closed	closed	closed	5.5/4.9
Charge	4/26	11:30pm	296	155	2402	71	320	N/A	235	45	25/12.5	open	closed	open	open	5.5/4.9
Recover	4/26	11:50pm	980	515	2377	71	183	N/A	178	45	. 24	open	closed	closed	closed	5.5/5
Setup	Ì	-			- TET											
At temp	4/27	12:55am	535	284	2498	70	164	N/A	160	45	17	open	closed	closed	closed	5.5/5.1
Charge	4/27	1:00am	292	194	2339	69	170	N/A	170	48/45	25/12.5	ореп	closed	open	open	6.2/5.8
Recover	4/27	1:20am	980	514	2326	69	189	N/A	184	45	25.8	open	closed	closed	closed	5.7/5.2
<u> </u>										-						
¥	4/27	205am	750	395	(estimated	flow rates)										
rim	4/27	245a	484	248	(estimated	flow rates)	<u> </u>									
ZON ENGINEERING 16	4/27	300am	508	267	(estimated	flow rates)										
*	4/27	400am	465	241	(estimated	flow rates)										
fi	4/27	500am	566	301	(estimated	flow rates)								Ì	_	
<u>m</u>	4/27	600am	689	364	(estimated	flow rates)								1		
#	4/27	700am	463	235		flow rates)										1
f	4/27	800am	448	238		flow rates)								1		
<u>Ľ</u>	4/27	900am	290	152	+	flow rates)	<u> </u>	 								
ф	.,								,	1		·				1

Notes:
The duration of each charge period is 5 minutes (0.083 hours)
The duration of each refining period is 8 hours.

"Notes:
The duration of each charge period is 5 minutes (0.083 hours)
The duration of each refining period is 8 hours.

Conditions:	D-4-	Ti	D CELL	6 651		Amblent	Diverter valve	12" inlet	Bag H.	l		Stack damper	Air dump position -	damper Position -	Furnace	
Setup	Date 4/28	Time	Qxy CFH	Gas CFH	Furn. Temp	Temp	Temp	Temp	temp	VFD Hertz	Damper set %	door position	0/C	O/C	door - O/C	Magnahe
At temp	4/28	4:55pm	537	288	2500	78,8	154	n/a	154	45	12		-11	-11	-11	E C IE A
Charge	4/28	5:00pm	291	154	2377	75.5	210	n/a	183		25/12.5		closed	closed		5.6/5.1
Recover	4/28	5:20pm	980	515	2352	78.4	194	n/a	177.1	45	19.9	open	closed	open		5.6/5.1
ACCOVE	7/20	5:00pm	380	71,7	2332	70.4	134	11/4	1//.1	45	19.9	open	closed	closed	ciosea	5.6/5.2
At temp	4/28	5:40pm	978	514	2492	79.9	205.2	n/a	205.8	45	101		-11	-11	1	E E /E 2
Charge	4/28	5:45pm	286	151	2342	79.3	215.7	n/a	209.5		18.1 25/12.5	open	closed	closed		5.5/5.2
Recover	4/28	6:05pm	977	516	2345	79.5	197.9	n/a	193.6	45	25/12.5	open	closed	open		5.5/5.2
1000701	1720	6:40 AM	377	310	2343	75.5	137.3	11/4	155.0	47.5	23.3	open	closed	closed	ciosea	5.6/5,3
									~		***		****			***************************************
At temp	4/28	6:40pm	977	510	2501	80.4	236.4	n/a	223.9	47.5	23.4	open	closed	closed	closed	6/5.7
harge	4/28	6:45pm	293	154	2383	81.9	222.2	n/a	223.9	47.5	25/12.5	open	closed	open	open	6/5.7
Recover	4/28	7:05pm	298	515	2380	79.8	218	n/a	208	47.5	27.1	open	closed	closed	closed	6.2/5.9
	1/20	7:40pm	500							50						6.7/6.3
lt temp	4/28	7:55pm	688	361	2509	77.6	177.4	n/a	205.6	50	17	open	closed	closed		6.75/6.3
harge	4/28	8:00pm	293	155	2384	76.5	197.5	n/a	202.7		25/12.5	open	closed	open		6.9/6.4
Recover	4/28	8:20pm	974	514	2380	75.3	195.9	n/a	194.9	50	28	open	closed	closed	closed	
	4/28	8:45pm	292	154					236	50						7.1/6.6
	4/28	9:00pm	507	222	aras					45						5.5/5
At temp	4/28	9:25pm	607	322	2509	73.8	161.2	n/a	184.6	45	21.9	open	closed	closed	closed	
Charge Recover	4/28 4/28	9:30pm 9:50pm	292	154	2356	74.1	212.1	n/a	196.2		25/12.5	open	closed	open		5.6/5.2
ecover	4/28	9:50pm 10:30pm	981	519	2371	74	219.7	n/a	194.2	45	25	open	closed	closed		6.1/5.2
+ tamp	4/28	10:55pm	554	591	2500		262		236	50	40.0	****				6.7/6.5
At temp	4/28	11:00pm	291	152	2442	74	135	n/a	157	50	19.9	open	closed	closed	closed	
lharge Recover	4/28	11:00pm	981	513	2391	74 75	184 174	n/a	171		25/12.5	open	closed	open	open	<u> </u>
recover		11.20pm	301	213	2391	/5	1/4	n/a	162	50	19.5	open	closed	closed	closed	7.1/6.7
t temp	4/29	12:25am	538	282	2500	72	136	n/a	156	50	20.4	open	closed	closed	closed	7/6.7
harge	4/29	12:30am	291	152	2366	73	201	n/a	174	50	25/12.5	open	closed	open	open	7.1/6.7
ecover	4/29	12:50am	980	515	2471	72.5	207	n/a	199.6	50	21	open	closed	closed	closed	6.9/6.6
5																
		205am	750	395	2516	70.6	154		163	45	20	t54/b31.5	closed	closed	closed	5.8/5.3
1		245a	484	248	2502	71	176		158	40	21	t54/b31.5	closed	closed	closed	4.8/4.4
<u>:</u>		300am	508	267	2505	71	187,9		169	40	18.5	t54/b31.5	closed	closed	closed	4.9/4.5
		400am	465	241	2500	71	164		170	40		t54/b31.5	closed	closed	closed	4.9/4.6
1		500am	566	301	2498	70	205		179	40	18	t54/b31.5	closed	closed	closed	4.9/4.5
1		600am	689	364	2483	70	174		159	40	17	t54/b31.5	closed	closed	closed	4.9/4.6
)		700am	463	235	2498	69	165		153	40	25	t54/b31.5	closed	closed	closed	4.9/4.6
		800am	448	238	2500	71.6	177		160	40		t54/b31.5	closed	closed	closed	5/4.7
,		900am	290	152	2428	75	184		161	40	26	t54/b31.5	closed	closed	closed	5/4.7
		10am				ĺ		+								

Calibration Information

Meter Box
Calibration Critical Orifices
Standard Meter
Pitots
Shortridge Micromanometer
Magnehelic Gauge
Thermocouples and Indicators
Nozzle Diameters
Barometer

Biannual Meterbox Calibration

Method EPA M-5 #7.2 3/24/2016 Location Horizon Shop Date Pb= 30.35 (in Hg) Meter Box ID 3 Ta= 58 (°F) Meter ID 6077419 517.67 (°R) Tamb calibrated by JM Orifice Set IZ Leak checks

	Old	New	Change	
0.97 <y<1.03< th=""><th>6/30/15</th><th>3/24/16</th><th>(+/-)</th><th></th></y<1.03<>	6/30/15	3/24/16	(+/-)	
Y=	1,02452	0.99150	-3.2%	PASS
dH@=	2.07640	1.88884	-9.0%	

Orifice Set	IZ				Negative Positive	0	in/min @ in/min @		inches H inches H		ı	dig	2.07010	1.00001	,,,,,,	L
	VAC	Critical Orifice ID	К	dH	Meter	Net	Field T _{di}	Meter T _{do}	Ть	T _m	Time t					
	(in Hg)			(inH ₂ O)	(ft³)	(ft³)	(°F)	(°F)	(°R)	(°R)	(min)	Y	dH@	Y 0.020	dH@ 0.20	Allow. Tolerance
Initial	21.5	IZ48	0.34956	0.71	928.512	5.3930	61.0	62.0	522.7	522.4	12.00	1.01070	1.89402	0.019	0.01	
Final	7				933,905		64.0	64.0						pass	pass	
Initial	20	IZ55	0.45656	1.3	933.905	6,0160	64.0	64.0	523.2	523,4	10,00	0.98662	1,93347	0.005	0.04	
Final	7	l .			939.921		64.0	63,0						pass	pass	
Initial	18,5	IZ63	0,58764	2.1	939,921	7.0460	64.0	63.0	524.7	525.2	9.00	0.97720	1,83902	0.014	0.05	
Final	1				946.967		68.0	67.0						pass	pass	
	·			···································								0.99150	1.88884			

STDEV STDEV/AVG 0.0141 1.42%

				Ambient				Heated		
Meterbox			Standard, °F	Measured, F	Difference %	Amb.	Standard, °F	Measured, ⁰F	Difference %	Heated
3	In		61.3	60,4	0,17%	pass	197.7	199,2	-0.23%	pass
3/24/16	Out		61,3	62.7	-0.27%	pass	197.9	199.2	-0.20%	pass
FLUKE		688								
Calibrated by		JМ								

Thermocouple			Ambient				200 +/-				400 ÷/-		
Indicator	Channel	Standard, ⁶ F	Measured, °F	Difference %		Standard, "F	Measured, °F	Difference %		Standard, °F	Measured, °F	Difference %	
3	Stack	59	61	-0.39%	pass	200	201	-0.15%	pass	400	401	-0,12%	pass
24-Mar-16	Probe	59	58	0.19%	pass	200	201	-0.15%	pass	400	399		pass
	Öven	59	58	0.19%	pass	200	202	-0.30%	pass	400	400		pass
	Impinger	59	61	-0.39%	pass	200	201	-0.15%	pass	400	.401	-0.12%	pass
	Aux		61	-0.39%	pass	200	201	-0.15%	pass	400	401	-0.12%	pass
	Meter In	59	61	-0.39%	pass	200	201	-0.15%	pass	400	401	-0,12%	pass
	Meter Out	59	61	-0.39%	pass	200	201	-0.15%	pass	400	401	-0.12%	pass
Signal Tester	647												
Calibrated by	JМ												

Biannual Meterbox Calibration

Method EPA M-5 #7.2 Location Horizon Shop Meter Box ID 25

Meter ID 15131835

HE ID calibrated by PLB Orifice Set ND Date 3/24/2016 Pb= 30.35 (in Hg) Ta= 58 (°F)

0 in/min @ 0 in/min @

Ta= 58 (°F)
Tamb 517,67 (°R)

25 inches Hg 6 inches H₂O

	Old	New	Change	
0.97 <y<1.03< th=""><th>8/25/15</th><th>3/24/16</th><th>(+/-)</th><th></th></y<1.03<>	8/25/15	3/24/16	(+/-)	
Y=	1.01267	0,99916	-1.4%	PASS
dH@=	1,79831	1.79729	-0.1%	_

	VAC (in Hg)	Critical Orifice ID	ĸ	dH (inH ₂ O)	Meter (ft³)	Net (ft ³)	Field T _{di} (°F)	Meter T _{do} (°F)	T ₀ (°R)	T _m (°R)	Time t (min)	Y	фН@	Y 0.020	dH@ 0,20	Allow: Tolerance
Initial	19,5	ND48	0.3353	0.68	167,251	5.1660	64.0	63,0	522.7	523.4	12,00	1.01408	1.97691	0,015		
Final					172,417		65.0	63.0						pass	pass	
Initial	17.5	ND55	0.44909	1,1	172.417	5.2750	65.0	63.0	523,2	524.4	9.00	0.99851	1.72363	0.001	0,07	
Final					177.692		67.0	64,0						pass	pass	
Initial	15	ND63	0.58688	1.9	177.692	6,2180	67.0	64.0	523,7	525.9	8.00	0,98489	1.69133			
Final					183,91		70,0	64.0						pass	pass	
												0.99916	1.79729		· · · · ·	1

			Ambient				Heated		
Meterbox		Standard, °F	Measured, °F	Difference %	Amb.	Standard, °F	Measured, °F	Difference %	Heated
25	ln	58.0	59,0			197,6	199.2		
3/24/16	Out	58,0	58.0	0.00%	pass	197.6	198,8	-0.18%	pass
Fluke	688								
Calibrated by	PLR								

· Leak checks

Negative Positive

Thermocouple			Ambient				200 +/-				400 +/-		I
Indicator	Channel	Standard, °F	Measured, °F	Difference %		Standard, "F	Measured, °F	Difference %		Standard, °F	Measured, "F	Difference %	
25	Stack	59	62	-0.58%	pass	200	200	0.00%	pass	400	399	0.12%	pass
24-Mar-16	Probe	59	61	-0.39%	pass	200	201	-0.15%	pass	400	398	0.23%	
	Oven	59	62	-0,58%	pass	200	198	0,30%	pass	400	398	0.23%	pass
	Impinger	59	62	-0.58%	pass	200	200	0.00%	pass	400	401	-0.12%	pass
	Aux		62	-0,58%	pass	200	199	0.15%	pass	400	400	0,00%	pass
	Meter	59	64	-0.96%	pass	200	202	-0.30%	pass	400	401	-0.12%	pass
		59	63	-0.77%	pass	200	202	-0,30%	pass	400	402	-0.23%	pass
Signal tester	647												
Calibrated by	PLB												

Post Test Meterbox Calibration

Method EPA M-5 #7.2 Location Horizon Shop

Meter Box ID 3

Meter ID 6077419 calibrated by PB Date

5/25/2016

Pb= 30.23 (in Hg) Ta= 66 (oF) Tamb 525.7 (oR) Biannual Post-Test Change 3/24/2016 5/25/16 (+/-)
Y= 0.99150 0.98308 -0.9% dH@= 1.86884 1.86822 -1.1%

pass

	VAC (in Hg)	Critical Orifice ID IZ	К	dH (inH2O)	Meter (ft3)	Net (ft3)	Field Tdi (oF)	Meter Tdo (oF)	To (oR)	Tm (oR)	Time t (min)	Y	gH@	Y 0,020	dH@ 0.20
Initial	20.5	55	0.44994	1.2	489.867	7.183	67	67	527.0	527.0	12.0	0.9766	1.8530	0.006	0.02
Final	20.0	55	0.4400-1		497.050		67	67						pass	pass
	20.5	55	0.44994	1.2	497.050	6.546	67	67	527.5	528.0	11.0	0.9842	1.8730	0.001	0.00
Initial	20.5	33	0.44554	1 '	503.596	0.0 10	70	68			1			pass	pass
Final	00 F	55	0.44994	1.2	503.596	5,939	70	68	528.0	529.3	10.0	0,9885	1.8787	0,005	0.01
Initial	20.5] 55	0,44884	1.2	509.535	0.000	71	68	† <u> </u>	1	1 .			pass	pass
Final	<u> </u>	<u> </u>	<u>l</u> ,	<u> </u>	309.333		<u> </u>		.!		ļ <u> </u>	0.98308	1.8682		

Allow, Tolerance

Post Test Meterbox Calibration

Method Location EPA M-5 #7.2 Horizon Shop

Meter Box ID 25

Meter ID 15131835 calibrated by PT

Date

5/31/2016

Pb= Ta= 30.11 (in Hg) 65 (oF) 524.7 (oR)

Tamb

	Biannual 3/24/2016	Post-Test 5/31/16	Change (+/-)
Y=	0.99916	0.97912	-2.0%
dH@=	1.79729	1.71253	-4.9%

pass

	VAC (în Hg)	Critical Orifice ID Shop #3	К	dH (inH2O)	Meter (ft3)	Net (ft3)	Field Tdi (oF)	Meter Tdo (oF)	To (oR)	Tm (oR)	Time t (min)	Y	dH@	Y 0.020	dH@
Initial	21	55	0.44771	1.1	16.656	5.074	67	66	526.5	527.0	8.5	0.9756	1.7098	0.020	0.20
Final	<u> </u>				21.730		68	67		027.0	0.0	0.07.00	1.7090		0.00
Initial	21	55	0.44771	1.1	21.730	6,270	68	67	527.0	528.3	10.5	0,9775	1,7070	0.002	pass
Final .					28.000		71	67	J	020.0	10.0	0,8773	1.7070	1	0.01
Initial	21	55	0.44771	1.1	28.000	6.242	71	67	527.5	529.5	10.5	0.9843	1.7208	0.005	pass 0.01
Final					34.242		72	68			, 5.5	3.5043	1.7200	pass	pass
	_				· · · · · · · · · · · · · · · · · · ·				·		L	0.97912	1.7125	pass	pass

Allow. Tolerance

Critical Orifice Calibrations

Client	HORIZO	NI									12/2/15 I)ate
Client	"YD" Sho										in house J	ob
Set ID	1.0031		Fluke ID 455								DP (Calibrated
DGM (Y) =	229904		Std Manometer 53	17							mew (QA/QC
DGM ID# Dry Gas Meter	229904		Orifice ID #	40	Orifice ID#	48	Orifice ID #	55	Orifice ID#	63	Orifice ID#	73
K' Critical Orifice Coefficient			Otthee ID "	0.23426		0.34072	Ī	0.44994	[0.59086		0.80743
K Chucai Offfice Coefficient	Symbol	Units	Run I	Run 2	Run l	Run 2	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2
Initial volume	Vi	ft²	498.995	504.431	509.896	515.660	521,449	531.500	537,697	545.494	553.284	563.225
Final Volume	V _f	ft²	504.431	509,896	515.660	521,449	531.500	537.697	545.494	553.284	563,225	580.024
Difference	\mathbf{V}_{m}	ft²	5,436	5,465	5,764	5.789	10.051	6.197	7.797	7.790	9,941	16.799
	V in	11	3,150									
Temperatures Ambient	т	°F	55.0	58.5	58.5	58.5	59.0	59.5	59.5	59.5	60.0	60.0
	T _a	°R	514.67	518,17	518.17	518.17	518.67	519.17	519,17	519.17	519.67	519.67
Absolute ambient	T_{a}	Κ.	314.07	310.17	310.17	010117						
Initial Inlet	T_{i}	°F	56,2	65.9	68.7	75.7	76.7	82.9	83.1	88.9	89.5	93.3
	$T_{\mathfrak{l}}$	°F	55,3	56.5	57.5	58.6	59.3	60.7	61.2	62.1	63.0	64.0
Outlet		°F	65.9	68.7	75.7	76,7	82.9	83.1	88.9	89.5	93.3	94.5
Final Inlet	T _i	oF.	56,5	57,5	58.6	59.3	60.7	61.2	62.1	63.0	64.0	65.7
Outlet	$\mathbf{T}_{\mathfrak{l}}$	_		521.82	524.795	527.245	529.57	531,645	533,495	535.545	537.12	539.045
Avg. Temp	T _m	°R	518.145	521.82	324.793	327.243	327.31	551.045	555,155	55510 10		
			18	18	13	13	17	10	10	10	9	15
Time		min	10	10	13	0	n n	30		o	20	44
		sec	18.00	18.00	13.00	13.00	17.00	10.50		10.00	9.33	15.73
SAMPLE RATE		ACFM		0,3036	0.4434	0.4453	0.5912	0,5902	0,7 <u>7</u> 97	0.7790	1.0651	1.0677
	410	in H ₂ O		0.28	0,67	0,67	1.20	1.20	2.20	2,20	4.20	4.20
Orifice man, rdg	dH@	inH ₂ O	30.08	30,11	30.11	30.08	30,11	30.08	30,05	30.05	30.08	30.08
Barometric, Pressure	Pbar	inFlg	21.0	21.0	19.6	19.6	18.0	18.0	16.0	16.0	12.8	12.8
Pump vacuum		mrig	0.2341	0,2345	0.3408	0.3407	0.4511	0.4488	0,5923	0.5895	0.8079	0.8070
K' factor			0.2541	0,2343	0.5100	0.3407	****	0.4499		0.5909		0.8074
K' factor Average		%	PASS	0.082%	PASS	0,016%	PASS	0.260%	PASS	0.237%	PASS	0.056%
% Error (+/- 0,5)		70	ייייייי	0.00270	11300							

Critical Orifice Calibrations

 Client
 HORIZON

 Set ID
 "NR" Shop #2

12/2/15 Date in house Job YY Calibrat

DGM(Y) =	1,0031	0	Fl. I., ID 455								m nouse	
			Fluke ID 455	_					;		YY	Calibrated
DGM ID#	229904	6	Std Manometer 53								mew	QA/QC
Dry Gas Meter			Orifice ID #	40	Orifice ID#	48	Orifice ID#	55	Orifice ID#	63	Orifice ID#	7
K' Critical Orifice Coefficient				0.23609		0.34106	ſ	0.44771		0.57050		0.7795
	Symbol	Units	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2
Initial volume	\mathbf{V}_{i}	ft²	580,170	587.015	595,181	600.520	605.860	612.315	618,785	625,170	631.564	637.75
Final Volume	$V_{\rm F}$	$\hat{\Pi}^2$	587.015	595.181	600.520	605,860	612,315	618,785	625,170	631.564	637,752	643.92
Difference	V_m	ft²	6,845	8.166	5.339	5.340	6,455	6,470	6,385	6.394	6.188	6.16
Temperatures											0.100	0.10
Ambient	$T_{\mathbf{a}}$	°F	59,5	58.0	58.0	58.5	58.5	59.0	59.0	59.5	59.5	59.
Absolute ambient	T_a	°R	519.17	517.67	517.67	518,17	518.17	518.67	518.67		519.17	519.1
Initial Inlet	T_i	°F	73.1	67.6	68.6	75.2	76.2	81.9	82,5	87.2	88.0	93.
Outlet	$T_{f'}$	°F	64.3	60.1	58.5	59,0	59.5	60.3	60.8	61,6	62,3	63.
Final Inlet	T_i	°F	67.6	68,6	75.2	76.2	81.9	82.5	87.2	88.0	93.7	94.
Outlet	$T_{\rm f}$	٥F	60.1	58.5	59.0	59.5	60.3	60.8	61.6		63.1	64.
Avg. Temp	T_m	°R	525,945	523.37	524.995	527.145	529,145	531,045	532.695	534.445	536.445	538.54
			· · · · · · · · · · · · · · · · · · ·								***	*****
Time		min	22	26	12	12	11	11	8	8	6	
		sec	10	42	0	0	0	0	30	30	o	
			22.17	26.70	12.00	12.00	11.00	11.00	8.50	8.50	6.00	6.0
SAMPLE RATE		ACFM	0.3088	0.3058	0,4449	0.4450	0.5868	0.5882	0.7512	0,7522	1,0313	1,028
Orifice man_rdg	dH@	in H_2O	0.28	0.28	0.66	0,66	1,20	1.20	2.00	2.00	3.90	3.9
Barometric, Pressure	Pbar	inHg	30.08	30.08	30.05	30.02	30.02	29,99	30,02	30.02	29.99	29.9
Pump vacuum		inHg	21.2	21.2	19.6	19.6	18.0	18.0	16.2	16,2	13,0	13.
K¹ factor			0.2368	0.2354	0.3416	0.3405	0.4479	0.4475	0,5709	0.5701	0.7823	0.776
K' factor Average				0,2361		0.3411		0.4477		0.5705		0.779
% Error (+/- 0.5)		%	PASS	0.308%	PASS	0.171%	PASS	0.039%	PASS	0.069%	PASS	0.357%

Secondary Standard

DATE:

7/22/2015

Operator:

Joe Ward

Meter 1	No: 2299	0046			Meter l	Box ∆⊦	I@	0.0000	,	Meter	Box Y	d	1.0031		Barom	etric Pres	sure:	29.71
					rd Mete lume (V			ter Box (lume (V _d			d. Mete serature			leter Box perature				
Q	Р	Н	Yds	Initial	Final	Vf	Initial	Final	Vf	Inlet	Outlet	Avg.	Inlet	Outlet	Avg.	Time	Yd	Run#
1,21	-1.60	0.00	1.0000	0.0	5,005	5.005	192,235	197,290	5.055	72,0	72.0	72.0	76.0	76.0	76.0	4.08	1.0015	.1
1.21	-1,60	0.00	1.0000	0.0	6.025	6,025	197.290	203,386	6,096	72.0	72.0	72.0	76.0	76.0	76.0	4.91	0.9997	_1
1,21	-1.60	0.00	1.0000	0.0	5.005	5.005	203,386	208,775	5.059	72.0	72.0	72.0	76.0	76.0	76.0	4.09	1,0007	1
0.40	-0,60	0.00	1,0000	0.0	9.145	9,145	255.492	264.670	9.178	72.0	72.0	72.0	76.0	76.0	76.0	22.49	1.0054	2
	-0.60	0.00	1.0000	0.0	5.000	5.000	264.670	269,691	5,021	72.0	72.0	72.0	76.0 :	76.0	76.0	12.29	1.0048	2
0.40		0.00	1.0000	0.0	6,000	6,000	269,691	275.726	6,035	72.0	72.0	72.0	76.0	76.0	76.0	14.73	1.0032	2
0.40	-0.60									72.0	72.0	72.0	77,0	77.0	77.0	8,00	1.0070	3
0.62	-0.80	0.00	1.0000	0.0	5.000	5.000	279,510	284.532	5,022	—						8.01	1,0058	3
0.62	-0.80	0,00	1,0000	0.0	5.005	5.005	284,532	289,565	5.033	72.0 .	72.0	72.0	77.0	77.0	77.0			
0.62	-0.80	0.00	1.0000	0.0	5.015	5,015	289.565	294.610	5.045	72.0	72.0	72.0	77.0	77.0	77.0	8,01	1.0054	3
0.83	-1.40	0.00	1.0000	0.0	6.005	6.005	307.368	313.408	6.040	72.0	72.0	72,0	76,0	76.0	76.0	7.17	1,0052	4
0.83	-1.40	0.00	1.0000	0.0	9.025	9,025	313.408	322,502	9.094	72.0	72.0	72.0	76.0	76.0	76.0	10.75	1.0034	4
0.83	-1.40	0.00	1,0000	0.0	5.000	5,000	322,502	327.531	5.029	72.0	72.0	72.0	76.0	76.0	76.0	5.97	1.0052	4
1.00	-1.50	0,00	1,0000	Ť	9.300	9,300	331,290	340,710	9.420	72.0	72.0	72.0	76.0	76.0	76.0	9.15	0.9984	5
1.00	-1.50	0.00	1.0000	0.0	5.005	5,005	340.710	345.770	5.060	72.0	72,0	72.0	76.0	76,0	76.0	4.92	1.0003	5
	-1.50	0.00	1.0000		5.005	5,005	345,770		5,061	72.0	72.0	72.0	76.0	76,0	76.0	4.95	1.0001	5
1.00	-1.30	0.00	1.0000	0.0	7.005	3,003	545.770	, 323.531		.1			<u> </u>	<u> </u>	AVEI	RAGE	1.0031	

Operator Signature _

Millennium Instruments Inc. 2402 Springridge Drive unit A Spring Grove IL. 60081 PHONE#(815)675-3225 FAX#(815)675-6965

E-mail: millennium@millinst.com

www.millinst.com

Probe ID: Date:

2-4

02/02/16

Operator:

SH

Procedure: Method 2 Section 10.0

Std. Manometer ID Std. P-Types Pitot

610/611/584

160-18

	DpP	DpS	Cp	dS	Avg Cp	S		
	(P-Type) (S-Type)			U 1	< 0.01		
Run#								
1	0.180	0.250	0.8400	0.004	0.8363	0.002	Cp Limits	Pass
2	0.470	0.660	0.8354	0.001			MAX/MIN	Pass
3	0.880	1.240	0.8340	0.002			S Limits	Pass
4	1.440	2.020	0.8359	0.000				× 400

Method 2 Passing Criteria 10.14.3/12.4

Client: Bulkey & Project No: 5752

Type S Pitot Tube Inspection Form

Complete this section fo	r ali pitot tubi	23.	
Parameter	Value	Allowable Range	Check
Assembly Level?	У	Yes	W
Ports Damaged?	W	. No	0
α1	i	-10° < α1 < +10°	V
α2	ı	-10° < α2 < +10°	1
β1	0	-5° < β1 < +5°	2
β2	0	-5° < β2 < +5°	4
γ	0	NA	NA
Θ	0	NA	NA.
$Z_1 = A \tan \gamma$	0	Z ₁ ≤ .125*	V
W₁ = A tan Θ	0	W ₁ ≤ .031 ⁿ	V
D _T	1375	.188" to .375"	
A/(2D _T)	.25	$1.05 \le P_A/D_T \le 1.5$	1
A	.75	2,1D _T ≤ A ≤ 3D _T	1

2.1 D₇ = _____ 3D₇ = _____

	on for pitot tubes attact	hed to Method 5 probes: W ₂ > 3 ⁿ	1
W ₂		W ₂ > 2"	
Z ₂		Z ₂ > 0.75*	
Y	3.25	Y≥3"	12

Certification

I certify that pitot tube/probe number 244 meets or exceeds all specifications, criteria and/or applicable design features. See 40 CFR PL 60, App. A, EPA Method 2.

Certified by:

Probe ID:

3-5

Date:

02/02/16

Operator:

SH

Procedure: Method 2 Section 10.0

Std. Manometer ID Std. P-Types Pitot

610/611/584 160-18

DpP DpS Cp dS Avg Cp S (P-Type) (S-Type) < 0.01 Run# 0.200 1 0.270 0.8521 0.005 0.84720.004 Cp Limits Pass 0.650 0.8418 2 0.470 0.005 MAX/MIN Pass 3 0.8901.220 0.8456 0.002S Limits Pass 1.480 2.010 0.8495 0.002

Method 2 Passing Criteria 10.14.3/12.4

Client: Bullsy # Project No: \$762

Type S Pitot Tube Inspection Form

PITOT TUBE/PROBE

3-5

Complete this section fo	or all pitot tube	es:	
Parameter	Value	Allowable Range	Check
Assembly Level?	123	Yes	V
Ports Damaged?	WO	No	_V
α1	l	-10° < α1 < +10°	V
α2	0	-10° < α2 < +10°	\mathcal{N}
β1	0	-5° < β1 < +5°	
β2	~ 1	-5° < β2 < +5°	V
γ	0	NA	NA
0	0	NA	NA .
$Z_1 = A \tan \gamma$	0	Z ₁ ≤ .125"	V
W₁ = A tan Ø	0	W ₁ ≤ ,031°	1
D _T _	,248	.188" to .375"	
A/(2D _t)	1,285	1.05 ≤ P _A /D _T ≤ 1.5	w
A	,6375	$2.1D_T \le A \le 3D_T$	-

W > 7.52 cm

(Cla)

Z>1.50 rm (N in)

Ton persion Sensor

(Cla)

Z>1.50 rm (N in)

Ton persion Sensor

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cla)

(Cl

147		W ₂ > 3"	NO
W ₂	2.08	W ₂ > 2"	V
Z ₂		Z ₂ > 0.75*	NO
Y	3,585	Y≥3"	

 $2.1 D_T = _$

Certification

I certify that pitot tube/probe number $\frac{3-5}{2}$ meets or exceeds all specifications, criteria and/or applicable design features. See 40 CFR Pt. 60, App. A, EPA Method 2.

Certified by:

Probe ID:

Date:

3-6

02/03/16

Operator:

SH

Std. Manometer ID Std. P-Types Pitot

610/611/584

160-18

Procedure: Method 2 Section 10.0

	DpP	DpS	Ср	dS	Avg Cp	S .		
	(P-Type) ((S-Type)			O I	< 0.01		
Run#	•							
1	0.200	0.280	0.8367	0.001	0.8378	0.002	Cp Limits	Pass
2	0.490	0.690	0.8343	0.004			MAX/MIN	Pass
3	0.870	1.210	0.8395	0.002			S Limits	Pass
4	1.500	2.080	0.8407	0.003				- 400

Method 2 Passing Criteria 10.14.3/12.4

Type S Pitot Tube Inspection Form

PITOT TUBE PROBE # 3	-6
----------------------	----

omplete this section f	or all pitot tubes.		
Parameter	Value	Ailowable Range	Check
Assembly Level?	YES	Yes	کسا ا
Ports Damaged?	NO	No	V
a1	i	-10° < α1 < +10°	V
α2	t	-10° < α2 < +10°	1
β1		-5° < β1 < +5°	V
β2	0	-5° < β2 < +5°	
γ	t	NA	NA
Ø	0	NA	NA
$Z_1 = A \tan \gamma$	1013	$Z_1 \le .125^*$	V
W₁ = A tan o	0	W ₁ ≤ .031*	$\perp \nu$
D₁	.252	.188" to .375"	
A/(2D ₁)	1,99	$1.05 \le P_A/D_T \le 1.5$	V
			•

W ₂	55	thed to Method 5 probes: W ₂ > 3"	V
¥¥2	,	W ₂ > 2 ^a	,
Z ₂	1.25	Z ₂ > 0.75"	$\perp \nu$
Y	4.5	V>3"	10

Certification

I certify that pitot tube/probe number 3. See 40 CFR Pt. 60, App. A, EPA Method 2. meets or exceeds all specifications, criteria and/or applicable design features.

Personnel (Signature/Date)

Certified by:

Client: Bullseyr
Project No: 5767
Date: 57,3716

Differential Pressure Gauge Calibration Form

¥			
Parameter	Value	Allowable Range	Check
P _{gauge,1} (in.w.c.)	2.424	NA NA	NA
P _{std,1} (in.w.c.)	2.4	. NA	NA
Difference ₁ (in.w.c.)	.024	NA	NA
Difference ₁ (%)		5%	

Difference = $|P_{std} - P_{gauge}|$ % Difference = $|P_{std} - P_{gauge}| \div P_{std}$

Parameter	Value	Allowable Range	Check
P _{gauge,Z} (in.w.c.)	#1.014	NA	NA
P _{std,2} (in.w.c.)	1.0	NA	NA
Difference _z (in.w.c.)	-014	- NA	NA
Difference₂ (%)		5%	

312 MAN 537 64° 29.99" System Leak 0.00@6.7

Parameter	. Value	Allowable Range	Check
P _{gauge,3} (in.w.c.)	.3020	NA	NA
P _{std,3} (In.w.c.)	,30	NA	NA
Difference ₃ (in.w.c.)	,0020	NA	NA
Difference ₃ (%)		5%	

Parameter	Value	Allowable Range	Check
Max Difference (%)		5% ·	

Certification

I certify that magnehelic/Shortridge number _____ meets or exceeds all specifications, criteria and/or applicable design features. See 40 CFR Pt. 60, App. A, EPA Method 2 Section 6.2.

Certified by:

Differential Pressure Gauge Calibration Form

MAGNEHELIC/SHORTRIDGE ID

SR#5

(circle one

Parameter	Value	Allowable Range	Check
P _{gauge,1} (in.w.c.)	2.413	NA	NA
P _{std,1} (in.w.c.)	2.400	NA	NA
Difference ₁ (in.w.c.)	.013	NA	NA
Difference₁ (%)		5%	

Difference = $|P_{std} - P_{gauge}|$ % Difference = $|P_{std} - P_{gauge}| \div P_{std}$

Allowable Range Check Value Parameter .9013 NA P_{gauge,2} (in.w.c.) 90 NA P_{std,2} (in.w.c.) NA 0013 NA NΑ Difference₂ (in.w.c.) 5% Difference₂ (%)

5td man: 537 64° 29.99" System LEAKV 0.000@ 6.7"

Parameter	Value ·	Allowable Range	Check
P _{gauge,3} (in.w.c.)	,4208	NA	NA
P _{std,3} (in.w.c.)	642	NA	NA
Difference ₃ (in.w.c.)	,0008	NA	NA
Difference₃ (%)	•	5%	

- I		1	
. Parameter	Value	Allowable Range	Check
Max Difference (%)		5%	

Certification

I certify that magnehelic/Shortridge number _____ meets or exceeds all specifications, criteria and/or applicable design features. See 40 CFR Pt. 60, App. A, EPA Method 2 Section 6.2.

Certifled by:

Client: Bulsey & 5.762
Date: 5/3/16

Differential Pressure Gauge Calibration Form

MAGNEHELIC/SHORTRIDGE ID:

97

(circle one)

Parameter	Value	Allowable Range	Check
P _{gauge,1} (in.w.c.)	<u> 25</u>	NA	NA
P _{std,1} (in.w.c.)	,25	NA	NA
Difference ₁ (in.w.c.)	0	NA NA	NA
Difference ₁ (%)		5%	

 $\mathsf{Difference} = \left|\mathsf{P}_{\mathsf{sld}} - \mathsf{P}_{\mathsf{gauge}}\right|$

% Difference = $|P_{skd} - P_{gauge}| \div P_{skd}$

Parameter	Value	Allowable Range	Check
P _{gauge,2} (in.w.c.)	019	. NA	NA
P _{std,2} (in.w.c.)	019	. NA	NA
Difference _z (in.w.c.)	0	NA	NA
Difference₂ (%)		5%	

SHUMAN 537 64° 29.99" System LEAKV 0.00@ 6.7

Parameter	Value	Allowable Range	Check
P _{gauge,3} (in.w.c.)	a 05	· NA	NA
P _{std,3} (In.w.c.)	.05	NA	NA
Difference ₃ (in.w.c.)	0	NA	NA
Dìfference₃ (%)		5%	

ı	,			, ,
	Parameter	Value	Aliowable Range	Check
	Max Difference (%)		5%	

Certification

I certify that magnehelic/Shortridge number $\frac{97}{100}$ meets or exceeds all specifications, criteria and/or applicable design features. See 40 CFR Pt. 60, App. A, EPA Method 2 Section 6.2.

Certified by:

Sample Box Thermocouple Calibrations

Month:	4/4/2016	1	ester/Standard:	PB,BW	Location:	Horizon Shop/A	lingham	Fluke 526	
			Ambient				Ice	:03	
	Date	Standard, F	Measured, °F	Difference %		Standard, "F	Measured, F	Difference %	
Sample Box - impinger out		416	(0.3	0.770/	2000	34.7	34.3	0.08%	pass
I-01	4/7/2016	64.3	68.3	-0.76%	pass	34.7	34.3	0.0076	pass
I-02	4/7/2016	66.3	66.0	0.06%	pass	33.1	32.7	0.08%	pass
I-03 1-04	1/27/2016	69.0	68.9	0.03%	pass	31.7	31.9	-0.04%	pass
I-04 I-05	10/7/2015	68.7	67.3	0.26%	pass	36.9	35.2	0.34%	pass
I-06	1/27/2016	57.7	55.7	0.39%	pass	31.7	32.6	-0.18%	pass
I-07	10/7/2015	68.7	67.3	0,26%	pass	37,1	37.6	-0.10%	pass
I-08	4/7/2016	63.8	65.1	-0.25%	pass	35,0	34,2	0,16%	pass
1-09	10/7/2015	68.6	66.6	0,38%	pass	37,2	36,8	0.08%	pass
I-10	1/27/2016	69.1	67.4	0,32%	pass	31.7	32.0	-0,06%	pass
I-11	1/27/2016	57.7	55,7	0.39%	pass	31.7	33.3	-0.33%	pass
I-12	4/7/2016	66,3	67.9	-0,30%	pass	33.2	33.7	-0.10%	pass
I-13	4/7/2016	64.4	63,5	0.17%	pass	33,0	32.9	0.02%	pass
I-14	4/7/2016	64.0	64.3	-0.06%	pass	33.5	32.7	0.16%	pass
I-15									
I-16	2/26/2016	64.0	65.0	-0.19%	pass	32.0	33.0	-0.20%	pass
I-17	10/7/2015	68.5	67.3	0,23%	pass	37.1	37.1	0,00%	pass
1-18									
I-19				0.0701		22.1	33.1	0.00%	pass
I-20	4/6/2016	66.8	66.5	0.06%	pass	33,1	33.1	0.0074	pass
I-21				0.040/		31.9	32.0	-0.02%	pass
I-22	3/14/2016	88.8	89,0	-0.04%	pass	33.1	33.8	-0.14%	pass
I-23	4/7/2016	66.1	64.8	0.25%	pass	36.5	36.4	0.02%	pass
I-24	10/7/2015	68.6	67.1 64.0	0.28%	pass pass	32.0	34.0	-0.41%	pass
I-25	2/26/2016	64.0	66.5	-0.17%	pass	34.7	34.4	0.06%	pass
I-26	4/7/2016	65.6 66.1	66.4	-0.06%	pass	34.3	33,3	0,20%	pass
I-27 I-28	4/7/2016 4/7/2016	64.3	63.1	0.23%	pass	33.5	33,9	-0.08%	pass
1-28 I-29	1/27/2016	67.5	65.5	0.38%	pass	31.7	32.1	-0.08%	pass
1-29 1-30	4/6/2016	66.8	65.6	0.23%	pass	33.2	33.7	-0.10%	pass
I-31	4/7/2016	68.0	69.1	-0,21%	pass	35.1	33,3	0.36%	pass
I-32	4/1/2010	00.0							
I-33				 			T		
I-34									1
I-35	4/7/2016	64.0	63.6	0.08%	pass	33.1	32.1	0.20%	pass
I-36	10/7/2015	69.8	68.1	0.32%	pass			·	
1-37	4/7/2016	66.1	66.9	-0.15%	pass	33.8	33.4	0.08%	pass
1-38	4/7/2016	64,2	63.9	0,06%	pass	33.1	33,1	0,00%	pass
1-39	4/7/2016	66.0	66.2	-0.04%	pass	34.7	34.0	0.14%	pass
1-40	4/7/2016	64.3	62,7	0.31%	pass	33.1	32.0	0.22%	pass
1-41	4/7/2016	64.0	62,2	0.34%	pass	33.0	33,3	-0.06%	pass
						366	75.6	0.209/	2000
GS-02	4/6/2016	66.5	65.1	0.27%	pass	36.6	35.6	0.20%	pass
GS-03	4/6/2016		64.7	0.32%	pass	35.7	33.4 32.5	0.46%	pass
GS-202-01	4/7/2016	64.0	62.8	0.23%	pass	33.1	33.5	-0.16%	pass
GS-202-02	4/7/2016		66.9	-0.25%	pass	32.7 33.0	33,5	-0.10%	pass
GA-05	11/3/2015	50,5	48.5	0.39%	pass	33,0	33,3	-0,1076	pass
	10-20-1		1 572	0,10%	Boos	31.8	31.9	-0.02%	pass
-GN-2	1/27/2016		57.2	0.10%	pass	33.8	33.1	0.14%	pass
GN-7	4/6/2016		65,0 53,0	0.29%	pass	35.1	34.8	0.06%	pass
4721	11/3/2015	54.2	62,1	0.23%	pass pass	33,0	33,5	-0.10%	pass
SEA-GN-1	4/7/2016	64.0 50.5	48,5	0.39%	pass	33.0	33.5	-0.10%	pass
		50.5	48.5	0.39%	pass	33.0	33.5	-0.10%	pass
		50.5	48.5	0.39%	pass	33.0	33.5	-0.10%	pass
	1	JU.2	+0.2	0.3770	Pass	55.0		-0.10%	

Sample Box Thermocouple Calibrations

Month:	4/4/2016	,	Tester/Standard:	PB,BW	Location	: Horizon Shop/	Auburn shop/Bel	lingham	Fluke 526
			Ambient				Heated		
	Date	Standard, °F	Measured, °F	Difference %		Standard, °F	Measured °F	Difference %	
Sample Box - oven					VII.AL	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Dilloronce 70	L
(017 4/5/2016	65,1	65.3	-0.04%	pass	254.0	259.0	-0.70%	pass
•	018 4/4/2016	63.4	62.7	0.13%	pass	257.0	258.0	-0,14%	pass
. (019 4/6/2016	59.6	57.1	0.48%	pass	227.0	228,0	-0.15%	pass
(020 4/6/2016	60,1	58.3	0.35%	pass	235.0	237.0	-0.29%	pass
j	156 DECONST						71	-1	pubb
j	172 10/7/2015	72.2	70.1	0.39%	pass	212.0	217.0	-0.74%	pass
1	173 12/22/2015	64.0	64.0	0.00%	pass	248.0	249.0	-0.14%	pass
1	184 DECONST								
]	185 10/7/2015		69.9	0.36%	pass	224.0	225.0	-0,15%	pass
]	186 4/5/2016		65.4	-0.13%	pass	263.0	261.0	0.28%	pass
	187 DECONST								
	10/7/2015		69,1	0.17%	pass	226,0	224.6	0.20%	pass
	10/7/2015	70,6	68.6	0.38%	pass	222,0	226.1	-0.60%	pass
	90 DECONST								
	2/26/2016	65.0	64.0	0.19%	pass	228.0	225,0	0.44%	pass
	230								
	23 4/7/2016		68.0	0.09%	pass	262.0	259.0	0.42%	pass
	27 4/5/2016	64.9	65.4	-0,10%	pass	258.0	258.0	0.00%	pass
	28								
	29 4/6/2016	59.8	58.0	0.35%	pass	210.0	209.0	0.15%	pass
	31 DECONST								
	12								
	13 2/1/2016	54.3	54.3	0.00%	pass	232.0	230.0	0.29%	pass
	50 4/7/2016	66,6	67.0	-0.08%	pass	273.0	272.0	0.14%	pass
	51 4/7/2016	65.7	65.0	0.13%	pass	280.0	281.2	-0.16%	pass
	52 4/6/2016	65.6	67.0	-0.27%	pass	265.0	265.0	0.00%	pass
	31 5/17/2016	61.4	64.3	-0.56%	pass	200.1	199.8	0.05%	pass
	53 1/27/2016	56.9	55,3	0.31%	pass	224.0	229,0	-0.73%	pass
	73 4/7/2016	65,3	67,0	-0.32%	pass	261,0	263.2	-0.31%	pass
	79 4/7/2016	62.0	60.1	0,36%	pass	254.0	252.0	0.28%	pass
	24 4/7/2016	60.1	64.0	-0,75%	pass	218.0	218,0	0.00%	pass
	25 4/7/2016 09 4/5/2016	58.4	60,0	-0.31%	pass	257.0	261.0	-0.56%	pass
		64.6	64.2	0.08%	pass	259.0	256,0	0.42%	pass
	49 4/7/2016	58.0	59.0	-0.19%	pass	261.0	260.0	0.14%	pass
OP- OS-		71.0	71.0	0.00%	pass	260.0	262.0	-0,28%	pass
OS-		62,2	60.3	0.36%	pass	183,4	191.0	-1.18%	pass
OS-		64,8 61,6	64.3 60.3	0.10%	pass	254.0	253.0	0.14%	pass
OS-				0.25%	pass	260,0	258.0	0.28%	pass
:OS-		57,2 65.0	55.8	0.27%	pass	227,0	231.0	-0.58%	pass
OS-		65,9	65,5	0.08%	pass	260,0	261.0	-0.14%	pass
PDX OS-		63.6 64.8	63,1	0.10%	pass	263,0	261.0	0.28%	pass
SEA OS-			66,0	-0.23%	pass	269.0	267.0	0.27%	pass
SEA OS-		63.5 62.6	63.7	-0.04%	pass	252.0	250,0	0.28%	pass
SEA OS-			65.1	-0.48%	pass	185.1	185,3	-0.03%	pass
3EA 05-	03 4/7/2016	64.1	65,0	-0.17%	pass	260,0	258.2	0.25%	pass

162

Cert. No.: 4039-6313610

Certificate No. 1750.01 Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A.

Instrument Identification:

Model: 9327K16

S/N: 140754307

Manufacturer: Control Company

Standards/Eq	uipment:
--------------	----------

Serial Number	<u>Due Date</u>	NIST Traceable Reference
A45240		
A17118	2/24/15	1000351744
128	3/12/15	15-CJ73J-4-1
B3A444		
140073820	1/28/15	4000-5680560
	A45240 A17118 128 B3A444	A45240 A17118 2/24/15 128 3/12/15 B3A444

Certificate Information:

Technician: 68

Procedure: CAL-03

Cal Date: 10/31/14

Due Date: 10/31/16

Test Conditions:

23.0°C

43.0 %RH 1021 mBar

Calibration Dat	ta: (New Instrument)
Callylation Dat	ta, (Item illationit)

Unit(s)	Nominal	As Found	in Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR
°C		N.A.		0.000	-0.3	Υ	-1.0	1.0	0.10	>4:1
°C		N.A.		100.000	99,7	Y	99.0	101.0	0.059	>4:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Retio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading: As Left=Instrument's Reading: In Tolerin Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

Yliad Rodrigues Nicol Rodriguez, Quality Manager

Aaron Judice, Technical Manager

Maintaining Accuracy:

In our opinion once calibrated your Water-Proof Thermometer °F/°C should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Water-Proof Thermometer °F/°Cs change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Celibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01.

Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA.

International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

Cert. No.: 4039-5554528

Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Cust ID:Horizon Engineering, 13585 NE Whitaker Way, Attn. Joe Heffernan III, Portland, OR 97230 U.S.A. (RMA:982686)

Instrument Identification:

ID: CS Model: 90205-22 S/N: 111896552 Manufacturer: Control Company

Standards/Equipment:			
Description	Serial Number	<u>Due Date</u>	NIST Traceable Reference
Temperature Calibration Bath TC-179 Thermistor Module Temperature Probe	A45240 A17118 128	2/13/14 2/20/14	1000332071 6-B 48Z 9-30-1
Temperature Calibration Bath TC-218 Thermistor Module	A73332 A27129	10/25/14	1000346002

5202

Certificate Information:

Technician: 68

Procedure: CAL-03

Cal Date: 12/03/13

11/30/14

Cal Due: 12/03/15

15-B15PW-1-1

Test Conditions:

24,5°C

Thermistor Module

Temperature Probe

44.0 %RH 1007 mBar

Calibration Data:

Odiibi deloi.	Data.									
Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR
*C		N,A.		0,000	-0.5	Y	-1.0	1.0	0.100	>4:1
°C		N.A.		100.000	99.7	Υ	99.0	101.0	0.059	>4:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage fector k=2 to epproximate a 95% centificace level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=tn Tolerance; Min/Mex=Acceptance Renge; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) - Tolerance; Date=MM/DD/YY

Yund Kodriguez Nicol Rodriguez, Quality Menager

Aaron Judice, Technical Manager

Maintaining Accuracy:

In our opinion once calibrated your Water-Proof Thermometer °F/°C should maintain its accuracy. There is no axact way to determine how long calibration will be mainteined. Water-Proof Thermometer °F/°Cs change little, if eny at all, but can be affected by aging, temperature, shock, and contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Celibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01.

Control Company is ISO 9001:2008 Quality Certified by (ONV) Dat Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA.

International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

Cert. No.: 4039-7216692

Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Cust ID:Horizon Engineering, 13585 NE Whitaker Way, , Portland, OR 97230 U.S.A. (RMA:1000681)

Instrument Identification:

Model: 90205-22

S/N: 240289961

Manufacturer: Control Company

Standards/Equipment:

Description	Serial Number	Due Date	NIST Traceable Reference
Temperature Calibration Bath TC-179	A45240		-
Thermistor Module	A17118	3/03/16	1000371058
Temperature Probe	3039	4/02/16	15A0P2S-20-1
Temperature Calibration Bath TC-231	A79341		
Digital Thermometer	130070752	2/20/16	4000-6561724

Certificate Information:

Technician: 68

Procedure: CAL-03

Cal Date: 11/16/15

Due Date: 11/16/16

Test Conditions:

24.9°C

50.0 %RH 1011 mBar

Calibration Data:

Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR
°C	0.000	-0.2	Υ	0.000	-0.2	Υ	-1.0	1.0	0.10	>4:1
°C	100,000	100.0	Y	100.000	100.0	Y	99.0	101.0	0.059	>4:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified (limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal⇒Stendard's Reading; As Left=Instrument's Reading; In Tol≃in Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

Aeron Judice, Technical Manager

Maintaining Accuracy:

In our opinion once calibrated your Water-Proof Thermometer °F/°C should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Water-Proof Thermometer "F/"Cs change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company Is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01.

Control Company Is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA.

International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

Cert. No.: 4039-6313618

Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A. **Instrument Identification:**

Model: 9327K16

S/N: 140754311

Manufacturer: Control Company

 CH

Standards/Equipment:

Serial Number	<u>Due Date</u>	NIST Traceable Reference
A45240		
A17118	2/24/15	1000351744
128	3/12/15	15-CJ73J-4-1
B3A444		
140073820	1/28/15	4000-5680560
	A45240 A17118 128 B3A444	A45240 A17118 2/24/15 128 3/12/15 B3A444

Certificate Information:

Technician: 68

Procedure: CAL-03

Cal Date: 10/31/14

Due Date: 10/31/16

Test Conditions:

00

23.0°C

43.0 %RH 1021 mBar

Calibration Data: (New Instrument)

	(-,								
Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR	
°C		. N.A.		0.000	-0.5	Υ	- 1.0	1.0	0,10	>4:1	
°C		N.A.		100.000	99.7	Υ	99.0	101.0	0.059	>4:1	

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

Micol Rodriguez, Quality Manager

Aaron Judice, Technical Manager

Maintaining Accuracy:

In our opinion once calibrated your Water-Proof Thermometer °F/°C should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Water-Proof Thermometer °F/°Cs change little, if any at all, but can be effected by aging, temperature, shock, and contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Leboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01.

Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2005-AD-HOU-RvA.

International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

166

Cert. No.: 4039-6313622

Certificate No. 1750.01
Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A.

Instrument Identification:

Model: 9327K16

S/N: 140754314

Manufacturer: Control Company

BC

Standards/Equipment:

<u>Description</u>	Serial Number	Due Date	NIST Traceable Reference
Temperature Calibration Bath TC-179	A45240		
Thermistor Module	A17118	2/24/15	1000351744
Temperature Probe	128	3/12/15	15-CJ73J-4-1
Temperature Calibration Bath TC-309	B3A444		
Digital Thermometer	140073820	1/28/15	4000-5680560

Certificate Information:

Technician: 68

Procedure: CAL-03

Cal Date: 10/31/14

Due Date: 10/31/16

Test Conditions:

23.0°C

43,0 %RH 1021 mBar

Calibration Data: (New Instrument)

Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR
°C		N.A.		0,000	-0.5	Y	-1.0	1.0	0.10	>4:1
°C		N.A.		100,000	99.7	Y	99.0	101.0	0.059	>4:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage fector k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written epproval of Control Company.

Nominal=Standard's Reading; As Left=instrument's Reading; in Tol=in Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

Yund Kodricyus
Nicol Rodriguez, Quality Manager

Aaron Judice, Technical Manage

Maintaining Accuracy:

In our opinion once calibrated your Water-Proof Thermometer °F/°C should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Water-Proof Thermometer °F/°Cs change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01.

Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Verltas, Certificate No. CERT-01805-2006-AQ-HOU-RvA.

International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of i

Traceable® is a registered trademark of Control Company

Cert. No.: 4039-6313605

Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A. **Instrument Identification:**

matiament acitationalion

Model: 9327K16

S/N: 140754303

Manufacturer: Control Company

BS

Standards/Equipment:

<u>Description</u> Temperature Calibration Bath TC-179	Serial Number A45240	<u>Due Date</u>	NIST Traceable Reference
Thermistor Module Temperature Probe	A17118 128	2/24/15 3/12/15	1000351744 15-CJ73J-4-1
Temperature Calibration Bath TC-309 Digital Thermometer	B3A444 140073820	1/28/15	4000-5680560

Certificate Information:

Technician: 68

Procedure: CAL-03

Cal Date: 10/31/14

Due Date: 10/31/16

Test Conditions:

23,0°C

43.0 %RH 1021 mBar

Calibration Data: (New Instrument)

Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR
°C		N.A.		0.000	-0.2	Y	-1.0	1.0	0.10	>4:1
°C		N.A.		100.000	99.5	Y	99.0	101.0	0.059	>4:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Mirr/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Rallo; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

Micel Rodriguez, Quality Manager

Aaron Judice, Technical Manager

Maintaining Accuracy:

In our opinion once calibrated your Water-Proof Thermometer "F!"C should maintain its ecouracy. There is no exact way to determine how long calibration will be maintained. Water-Proof Thermometer "F!"Cs change little, if any at all, but can be affected by aging, temperature, shock, and contemination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01.

Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2005-AQ-HOU-RvA.

International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

168

Cert. No.: 4039-6313611 Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A.

Instrument Identification:

Model: 9327K16

S/N: 140754308

Manufacturer: Control Company

Standards/Equipment:

<u>Description</u>	Serial Number	<u>Due Date</u>	NIST Traceable Reference
Temperature Calibration Bath TC-179	A45240		
Thermistor Module	A17118	2/24/15	1000351744
Temperature Probe	128	3/12/15	15-CJ73J-4-1
Temperature Calibration Bath TC-309	B3A444		
Digital Thermometer	140073820	1/28/15	4000-5680560

Certificate Information:

Technician: 68

Procedure: CAL-03

Cal Date: 10/31/14

Test Conditions:

23.0°C

43.0 %RH 1021 mBar

Due Date: 10/31/16

Calibration Data: (New Instrument)

Odiibidaoi	Dutar (-7							
Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR
*C		N.A.	1	0.000	-0.3	Y	-1.0	1.0	0.10	>4:1
°C		N.A.		100.000	99.8	Υ	99.0	101.0	0,059	>4:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of et least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) - Tolerance; Date=MM/DD/YY

Lod Lodrigues icol Rodriguez, Quality Manager

Aaron Judice, Technical Manager

Maintaining Accuracy:

In our opinion once calibrated your Water-Proof Thermometer °F/°C should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Water-Proof Thermometer °F/°Cs change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750,01,
Control Company is ISO 9001:2008 Quality Certified by (CNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA.
International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

Cert. No.: 4039-7216695

Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Cust ID:Horizon Engineering, 13585 NE Whitaker Way, , Portland, OR 97230 U.S.A. (RMA:1000681)

Instrument Identification:

Model: 90205-22

S/N: 130301083

Manufacturer: Control Company

PB

Standards/Equipment:

<u>Description</u>	Serial Number	<u>Due Date</u>	NIST Traceable Reference	
Temperature Calibration Bath TC-179	A45240			
Thermistor Module	A17118	3/03/16	1000371058	
Temperature Probe	3039	4/02/16	15A0P2S-20-1	
Temperature Calibration Bath TC-231	A79341			
Digital Thermometer	130070752	2/20/16	4000-6561724	

Certificate Information:

Technician: 68

Procedure: CAL-03

Cal Date: 11/16/15

Due Date: 11/16/16

Test Conditions:

24.9°C

50.0 %RH 1011 mBar

Calibration Data:

Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR
°C	0.000	-0.3	Υ	0.000	-0.3	Y	-1.0	1.0	0.10	>4:1
°C	100,000	99.8	Υ	100.000	99.8	Υ	99.0	101.0	0.059	>4:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expended uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol∺h Tolerance; Min/Max∺Acceptance Range; ±U≕Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

Yind Kodriguez Nicol Rodriguez, Quality Manager

Aaron Judice, Technical Manager

Maintaining Accuracy:

in our opinion once calibrated your Water-Proof Thermometer "F/"C should maintain its accuracy. There is no exect way to determine how long calibration will be maintained. Water-Proof Thermometer "F/"Cs change little, if any et all, but can be affected by aging, temperature, shock, and contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01.

Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA.

International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

170

Cert. No.: 4039-7216696

Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Cust ID:Horizon Engineering, 13585 NE Whitaker Way, , Portland, OR 97230 U.S.A. (RMA:1000681) Instrument Identification:

Model: 90205-22

S/N: 130306869

Manufacturer: Control Company

Standards/Equ	ľ	or	n	e	n	t:
---------------	---	----	---	---	---	----

inavedarbinous			
Description	<u>Serial Number</u>	<u>Due Date</u>	NIST Traceable Reference
Temperature Calibration Bath TC-179	A45240 `		
Thermistor Module	A17118	3/03/16	1000371058
Temperature Probe	3039	4/02/16	15A0P2S-20-1
Temperature Calibration Bath TC-231	A79341		
Digital Thermometer	130070752	2/20/16	4000-6561724

Certificate Information:

Technician: 68

Procedure: CAL-03

Cal Date: 11/16/15

Due Date: 11/16/16

Test Conditions:

24.9°C

50.0 %RH 1011 mBar

Calibration Data:

Oundi union	Dutai					(1)				
Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR
°C	0.000	-0.2	Y	0.000	-0,2	Y	-1.0	1.0	0.10	>4:1
°C	100,000	99.8	Υ	100.000	99.8	Y	99.0	101.0	0,059	>4:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) - Tolerance; Date=MM/DD/YY

Micol Rodriguez, Quality Manager

Aaron Judice, Technical Manage

Maintaining Accuracy:

In our opinion once calibrated your Water-Proof Thermometer °F/°C should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Weter-Proof Thermometer °F/°Cs change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contect Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Leboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01.

Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA.

[International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

Cert. No.: 4039-6506386

Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A.

Instrument Identification:

PAT

Model: 9327K16

S/N: 150067645

Manufacturer: Control Company

Stan	dan	ds/E	aui	рm	ent:

<u>Description</u>	Serial Number	Due Date	NIST Traceable Reference
Temperature Calibration Bath TC-231	A79341	·	
Thermistor Module	A27129	11/04/15	1000365407
Temperature Probe	5202	11/19/16	6-CV9Y2-1-1
Thermistor Module	A17118	2/24/15	1000351744
Temperature Probe	3039	3/12/15	15-CJ73J-1-1
Temperature Calibration Bath TC-179	A45240		

Certificate Information:

Technician: 68 Test Conditions: Procedure: CAL-03

oure: GAL-03 32.0 %RH 1022 mBar

Cal Date: 1/28/15

Due Date: 1/28/17

Calibration Data: (New Instrument)

25.0°C

Unit(s)	Nominal	As Found	în Toi	Nominal	As Left	In Tol	Min	Max	±U	TUR
°C		N.A.		0,000	-0.4	Y	-1.0	1.0	0.10	>4:1
°C		N.A.		100.000	99.4	Υ	99.0	101.0	0.059	>4:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolarance conditions are based on test results felling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; #U=Expanded Measurement Uncertainty; TUR=Tast Uncertainty Ratio; Accuracy=#(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

Yurd Lodrushur Nicol Rodriguez, Quality Manager

Aaron Judice, Technical Manager

Maintaining Accuracy:

In our opinion once calibrated your Water-Proof Thermometer °F/°C should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Water-Proof Thermometer °F/°Cs change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards end Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01.

Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA.

International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

172

Cert. No.: 4039-7175480

Certificate No. 1750.01 Traceable® Certificate of Calibration for Water-Proof Thermometer °F/°C

Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A.

Instrument Identification:

JM

Model: 9327K16

S/N: 151830463

Manufacturer: Control Company

Standards/Equipment:

aras Edarbinoini			
<u>Description</u>	Serial Number	<u>Due Date</u>	NIST Traceable Reference
Temperature Calibration Bath TC-179	A45240		
Thermistor Module	A17118	3/03/16	1000371058
Temperature Probe	3039	4/02/16	15A0P2S-20-1
Temperature Calibration Bath TC-231	A79341		
Thermistor Module	A27129	11/04/15	1000365407
Temperature Probe	5202	11/19/16	6-CV9Y2-1-1

Certificate Information:

Technician: 68

Procedure: CAL-03

Cal Date: 10/30/15

Due Date: 10/30/17

Test Conditions:

24.4°C

50.0 %RH 1012 mBar

Calibration Data: (New Instrument)

Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR
°C		N.A.		0.000	-0.3	Υ	-1.0	1.0	0.10	>4:1
°C		N.A.		100,000	100.2	Υ	99.0	101.0	0.059	>4:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is meintained unless otharwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GLM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Mex-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Mex = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

Maintaining Accuracy:

In our opinion once calibrated your Water-Proof Thermometer °F/°C should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Water-Proof Thermorneter °F/°Cs change little, if any at ail, but can be affected by aging, temperature, shock, and contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibretion Leboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01.

Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA.

International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

. Page 1 of 1

Traceable® is a registered trademark of Control Company

																		0,0040	SSVd	L667.0	0.3010	0/67.0	0108.0	91/01/50	85-T	
																		0.0030	PASS	2605.0				91/91/60	IP-I	
																		0.0030		TELE.0				91/91/60	01∕-J.	
																		04:00.0		6262,0				03/10/76	8-525	
																		0,000.0	PASS	0.3287				91/01/60	\$25-S	
									0100.0	ISSVA	0.2403	00+70	0.2410	0067.0	91/01/£0	£9-I	1	0200.0		780E.0 710E.0				91/01/60	8-523	
									0.0030		0242.0				91/01/60			00000,0		#DIA\0i	00000	03100	0 30 60	91101/20	175-S	
									0100'0	SSAT	0.2433				91/01/20	ZS-T		0100.0		7205.0	0.3030	0.3030	OCDE O	91/01/60	8-520	
									l				LNAS	OLLERE	l	Ðſ		01:00:0		0.3100				91/01/60	615-8	
									0000.0		10/AJC#					6€1∕S		0100.0		6.3023				91/01/60	LIS-S.	!!
									01:00:0		0866.0				91/01/20	8EF-8		0.0020		0.3000				91/01/60	915-S]
									0500.0		0.2527				91/01/20		1	0.0030		£21£0				91/01/50	S15-8	
									0100.0		47270				91/61/E0	SEA-8	ĺ	0.0030	PASS	7060.0				91/01/£0 91/01/£0	#15-S	i i
									0100.0		7752.0				91/01/60	7EÞ-S	l	0.0020		0605.0				91/01/20	ZIS-S	
									0.0030		0.2363	0852,0	0552.0	0.2360	91/01/20	8-433							RESERV		115-S	
									0.0030	88A9	0.2643				9I/FI/E0	ZEÞ-8		0100.0	PASS	£60£'0	0605.0			91/01/60	015-S	
									0100.0		0.2453				91/01/£0	151-S					l		RT TON		505-R	
									0.0020	SSA9	0,2440	DEPZ'0			91/01/60	0€1−S 671−S		04-00,0		£80£,0				91/01/20	8-503	
									i		1			KEREKA KEREKA		821-2		0.000.0		0.3118				91/91/60	202-2	3716.0
									0100.0	SSV4	7125.0	0152.0			91/01/60	97Þ-S		0.0020		Z£04.0				91/91/60	EI-I.	1191/5
									0.0010	SSA4					91/01/60	87F8						0,0,0		31131,00	21-T	
									0.000	SSAT	#DIA\06					+7≠S	1						иот ък		II.T	
									0.0030	PASS	5282.0				91/01/60	87423	1	0.0010		6454.0		014340	0,4340	91/01/50	0I-J.	
r	_	1	_	cvi	AMERICA	,	t-Q-T	7	0.0030		7262.0				91/01/60	8-455		0100.0		££04.0				91/01/60	917-8	
070070	88A1	0.1230	0421.0		SERENA OTTEO	91/01/£0	49°I.	İ	0.0040		0,2840				91/01/£0 91/91/E0	[2] 8	1	0500.0	SSAT :	0.4433				91/1/50	SIT-S	
155500	Į	1	1		OLLEKI		95-T	l	3,000	Do vd	20900	0:300		OFFICE OFFI OFFI OFFI OFFI OFFI OFFI OFFI OFF		611°S		01:00:0	SSAT	7824.0				91/01/£0 91/01/£0	S-714	
000000	PASS	i0/AICI#	1			-	55-I	l	0.0020	88.A4	7045.0	07#70			91/01/60	8I#-S	1	0.0010	PASS	782k.0				91/01/20	217.2	1
00000.0	SSA4	#DIAW	1				8-209	l	0.0020	SSVd	09170	0.2450	0.2470	0.2460	91/01/60	91 * -S	1	0100.0	22A4	782≱.0	0.4280	067170	0.4290	91/01/20	IIL'S	
			1				S-208		0.0030	SSA9	6952.0				91/01/80	SIFS		0.0030	SSAT	T0£4.0	0864.0	0.4350	0.4370	91/01/00	604-S	
0200.0	SSVA	0511'0					£02-S		0⊧00.0	SSA4	T122.0	0225.0	0.252.0	0.2510	91/01/£0	*[#S		00000,0	SSV4	#DIA\0\					807-R	
0,000,0	PASS	6,1245	09110	05110	071170	03\10\1e 03\10\1e	907-S		0200.0	SSVa	01970	000700	arome	al pro	07 10 5 100	EIT'S		01:00.0	PASS	0114.0	1044.0	\$£44,0	26£1.0	91/91/60	LOL-S	
0100.0	PASS	0.1213				91/01/50	500 S		0.0010	22 A 9	5222.0				91/01/60	2411 2411		04:00:0	SSA¶	#DIA/03	ocheo.	00460	occeso	91/01/50	90 <i>L</i> -8	
0100.0	SSAY	7911.0				91/01/E0	£07-S		0,0030	SSAT	75457				91/01/20	011-S		0,0040	SSVd	70LL0				91/01/60	\$02-S	
0700'0	SSAT	0,1223	0.121.0	0.1230	0.1230	91/01/60	Z07-S	521,0	2200.0	SSAT	2092.0				91/91/80	60t~S		0.0030	SSAG	0.0110				91/91/60	8-703	275£.0
0100'0	SSAT					91/01/60	107°S	.8/I	5100'0	SSA4	0.2580	0,2590	5752.0	5252.0	91/91/20	80⊬8		0.0030	SSVd	6,4253	0.4250	0.4270	0,4240	91/01/60	704-S	
0.0020	SSAT	0.1760	0.1770			91/01/60	L9-I	1	0,0020	SSAT	7422,0				91/01/20	90⊬S		0500.0		71hh.0	0.144.0	0.4400	(M+1+1-,D	91/91/60	107-2	#91/L
02000	SSVA	01740	00/110		RESERV		99-J		5500.0	SSA4	0.2580				91/91/60	501-S		0.000	SSAY	10\VIC]#	l				S-T	
0.0040	22A4	0.1800				91/01/60	59-L	l	0.0020	SSA9	0,2540 0,2473				91/01/£0 91/01/£0	1:01-S £01-S		0400.0	FASS	01.6110	0.000		RESER		ÞΤ	
\$100.0		8581.0				91/91/60	t-C-1	l	0.0020	PASS	09420				91/01/E0	101-S	1/d#	0.0030	22A4	0.5000				91/01/E0 91/91/E0	2-T	
0100.0	SSVd	1781.0				91/41/20	615-2	l	00000	DD 7 G	07100	02120		KEZEKA		87-1	11971	\$100,0		EROSTO				91/91/60	1-I	1
0.0030		T02L0					818-8	l	00000	SSA9	#DIA\01					72-T		01:00:0		7681.0				91/01/60	8-820	
	88A¶	0771.0				91/01/60	LIE'S	Ι,		PASS	0,3740				91/91/20	97 - I		0.0000		#DIA\01					618-8	
0.0010		ThTI.0					916-8		0.0030		TLTE.0				91/01/60	#ZT.			22A4	0.5090				91/91/20	818-S	
0100.0	SSAG	78aI.0	0891 0		O 1690 RESERVA	91/01/60	\$18*S	l	0200.0	SSAT.	0475.0				91/01/20	££-T		04:00:0		7689.0	0.4830	0.4820	0.4860	91/01/60	LIS-S	
2000.0	SSVJ	1271.0	07/10			91/01/20	EIE-S			SSVd	0.3753				91/01/E0 91/01/E0	0Z-1		0000.0	88 A9	50/AJCI#		OTA.	низик		918-S	
0.0030							716-S		0.0020		5875.0				91/01/20	699-S		0.000.0	SSVA	08610	086F.0			91/01/60	\$18°S	
0.0030		0.1730					HE-S		0+00.0	SSAT	2.57E.0				91/91/90	\$29:8	1	0400.0		0664.0				91/01/60	S18-S	
	22A4	£771.0				9 I/ 0I/£0	016-8		0.0030	SSVd	0.3790	008E.0			91/1/1/20	\$£9~S		0,0040		0861/0				03/10/16	718-S	
	PASS	7421.0				91/01/50	60£-S			LI		L		NOTPRI		££9-8			22AT	0.4882	0.4885	5681.0	0.4865	91/91/60	118-S	
0.000.0	ESA¶	0671.0				91/01/50	808-S			28AT	T07.6.0				91/91/20	7£9-S		0.0010	SSAT	6.4923	0.4930	07610	(1592.0	91/01/90	018-S	
0.0030	PASS	7250.0				91/01/60	205-S		0£00.0 0£00.0	SSA9 SSA9	0.3747				91/01/60	169°S 069°S		0100:0	cew.r	LECHE	noncie	occive	ooocie	OI milico	608-8	
	SSA9	0771.0				91/01/20	50E-S		0.0020	22.A9	0172.0				91/01/£0	679-S		0.0000	22AT	7664.0	U005 U	U007 D	OCUS O	91/01/60	808-S	
	28AT	£071.0				91/01/00	108-8		0.00.0	PASS	6.3723				91/01/E0	879·S		0.0030	PASS	£96 ₽ ′0	07.64.0	0567.0	0861.0	91/01/60	908-S	
	SSAT	#DIA\0;					£0£-8		0.0020	PASS	7⊧8£.0		0≱9€.0	0#9E'0	91/01/20	Z79-S									S08-S	}
0.0020	PASS	0081.0					Z0E-S	5781.0					ED	KEZEKA		779-S		0.0030	PASS	£96₽°0				91/01/20	†08 - S	1
0,0020	88A4	7215.0 7215.0				91/01/20	10£-6	#91/£	0000.0	REAG	#DIA\0i		. سمام			279°S			PASS	0.4980				91/01/60	508-8	
0.000.0	22AG	728I.0				91/01/20	876-S 276-S							NOT PRI		779-S		0200.0	88A4	0905.0	0702.0			91/01/60	Z08-S	05.0
	SSAG	0481.0					976-8		0£00'0	SSAT	£96£.0	0565.0			91/01/£0	079-S	- 1	0000.0	PASS	(0/AICI#		UπΛ	KRSEK		S-A13	Z/I
00000,0	28AT	#DIA\0i			,	. ,,	\$26-8			SSVd	6076.0				91/01/60	819-S		0.0020	SSAG	6223.0	0.6230	0523.0	0129.0	91/ +1 /£0	S-A12	
	PASS	£607'0					₽ Z6 °S		01>00'0	SSV4	\$195.0	2096.0	009€'0	01/98.0	91/91/20	LI9-S	i	0,0020	SSAG	0213.0	0P19'0	0.6150	091910	91/01/50	IIV-S	
0+00.0	28A4	7205.0				91/01/£0	S-923		0.0030	SSAT	6.272.0	0.3720	0.3710	0.3740	91/01/00	919-S			PASS	£659.0	0.6580	009910	0099'0	91/01/60	01V-S	
0100.0	SSA4	0.2123					₹16-S		0.0020	PASS	0.3703				91/01/50	519-S		0.0020	SSA4	0788.0				91/01/60	60A-8	
	SSAT SSAT	0.2030				91/01/E0 91/01/E0	£16-S			SSAT	7#98.0				91/01/60	F19-8			22AT					91/01/60	80A-2	
0.0030	88A9	08070				91/01/60	116-S			RSAT	0.3630				91/01/60	£19-S		0.0020	PASS					91/01/60 91/01/60	70A-8	
		30000		.,,,,,,	30000	200000	016-8		0.0020		757E.0				91/01/60	119.5		VLVU V	ουνα	517A ()	いいたりり		RESER.	91/01/60	20A-2	- 1
	SSV4	7212.0					606°S		0.0010		STTE				91/91/60	019-8		01:00:0	SSA4	0.6170	0.110.0			91/01/20	EOV-S	SZ9:0
0.0030	SSA¶	2012.0		0,2085	2115.0	91/91/60	806-S		0.0000	88A9	#DIA\01					.609°S		0.0010		£716.0	0819'0	0715.0	0719.0		20V-S	-8/S
		l	l		MOTPR		L06-S			PASS	6.3723				91/01/80	809-S	1	01:00:0		£9£7,0	0,7540	0757.0	0857.0	91/01/60	2-C04	
	L		021401				906-S			PASS	LL96.0				91/01/60	L09-S			88A4					91/01/20	S-C03	
0.00.0		0.2137								SSA9	LTLE"0	DELETE O	0.3720	0.3730	91/01/00	S09-S	- 1	0100,0	PASS	£0\$£*0	0057.0	0.7510	0.7510	01/01/01	Z00-S	57.0
0500.0 0100.0	SSV4	0.2013	000070				506-S						neggie	00100	07.045.000	40C-F		occess.	CCITT	CTCCIO	OLC 150	content or				
0500.0 0100.0	PASS	0.1977	0661'0	0561.0	0661.0	91/01/20	\$06°S \$06°S £06°S		0.0010	SSAT	£69£.0		0698.0	0.3700	91/01/20	\$09-S	1		PASS					91/01/60	S-C01	†/£
0£00.0 0£00.0 0£00.0 0£00.0 0100.0	PASS PASS PASS PASS	0.2050 0.1977 0.2050	00070 06110 07170 07070	0512.0 0213.0 02040	0702.0 0112.0 0991.0	91/01/E0 91/01/E0 91/01/E0	106°S €06°S 706°S		0.0000 0.0010	SSA4			0698'0	0075.0	91/01/20	509-8	- 1	0.0010	SSA9	£866,0	0866.0	0866.0	0666'0	91/01/E0 91/01/E0	2-C01	<u></u> †/£
0£00,0 0£00,0 0£00,0 0100,0	PASS PASS PASS PASS	0.2050 0.2050 0.2027 0.2033	0502.0 0412.0 0412.0 0402.0	0,2070 0,2040 0,2130 0,2130	0.2080 0.2070 0.1120 0.1990	91/01/E0 91/01/E0 91/01/E0	₽06°8 €06°8 706°8 106°8	0,219 17.0	0.0000 0.0000 0.00010	PASS PASS PASS PASS	0/AIG# 0/AIG# 0/3963	089£.0	07.3670	0198.0	91/01/20	8-603 S-603 S-603	%E'E'0	0500.0 0400,0 0100.0	PASS PASS PASS	7089.0 7089.0 7889.0	0789.0 0899.0 0899.0	0589.0 0896.0 0899.0	0886,0 0889,0 0899,0	91/01/60	S-C01	
0500.0 0500.0 0400.0 0500.0 0100.0	PASS PASS PASS PASS	0.2050 0.1977 0.2050	0502.0 0412.0 0412.0 0402.0	0512.0 0213.0 02040	0.2080 0.2070 0.1120 0.1990	91/01/E0 91/01/E0 91/01/E0	₽06°8 €06°8 706°8 106°8	612.0	0.0000 0.0000 0.00010	PASS PASS PASS PASS	#DIA\0i	089£.0		0198.0		209-8 209-8	%E'E'0	0500.0 0400,0 0100.0	PASS PASS PASS	£866'0	0789.0 0899.0 0899.0	0066.0 0866.0	0886,0 0889,0 0899,0	03\101/E0 03\101/E0 03\101/E0	2-C01 8-R03 2-B05 2-B05	<u></u> †/£

anoiderdileD elssoM leunnel&

Steinless Steel Novale Size List Horizon Engineering

91/01/50

Horizon Shop 2016 Calibrations

JH				mew	
BAROMETER CALIBRATIONS ELEVATION OF STANDARD 30 FT		inHg	inHg NWS	Diff %	inHg
ELEVATION OF OWNER, AND OUT.			······································		
TV 1			#N/A	#N/A	#N/A
TV 2			#N/A	#N/A	#N/A
TV 3	1/8/2016	30.10	30.02	0.3%	0.08
TV 4	1/15/2016	30.20	30.06	0.5%	0.14
TV 5	1/8/2016	30.20	30.02	0.6%	0.18
Portland Shop Barometer			*#N/A	#N/A	#N/A
Shortridge #1 (HE 276)	1/8/2016	30.30	30.02	0.9%	0.28
Shortridge #2 (HE 028)	1/8/2016	30.00	30.02	-0.1%	-0.02
Shortridge #3 (HE 226)	1/8/2016	30.00	30.02	-0.1%	-0.02
Shortridge #4 (HE 325)	1/13/2016	29.93	29.90	0.1%	0.03
Shortridge #5 (HE 414)	1/15/2016	29.99	30.06	-0.2%	-0.07
Shortridge #6	1/13/2016	29.93	29.80	0.4%	0.13
Shortridge #7 (HE 324)	1/8/2016	30.10	30.02	0.3%	0.08
Shortridge #8		•	#N/A	#N/A	•
CARL SLIMP			#N/A	"#N/A	

QA/QC Documentation Procedures

Introduction The QA procedures outlined in the U. S. Environmental Protection Agency (EPA) test methods are followed, including procedures, equipment specifications, calibrations, sample extraction and handling, calculations, and performance tolerances. Many of the checks performed have been cited in the Sampling section of the report text. The results of those checks are on the applicable field data sheets in the Appendix.

Continuous Analyzer Methods Field crews operate the continuous analyzers according to the test method requirements, and Horizon's additional specifications. On site quality control procedures include:

- Analyzer calibration error before initial run and after a failed system bias or drift test (within ± 2.0% of the calibration span of the analyzer for the low, mid, and high-level gases or 0.5 ppmv absolute difference)
- System bias at low-scale (zero) and upscale calibration gases (within ± 5.0% of the calibration span or 0.5 ppmv absolute difference)
- Drift check (within ±3.0% of calibration span for low, and mid or highlevel gases, or 0.5 ppmv absolute difference)
- System response time (during initial sampling system bias test)
- Checks performed with EPA Protocol 1 or NIST traceable gases
- Leak free sampling system
- Data acquisition systems record 10-second data points or one-minute averages of one second readings
- NO₂ to NO conversion efficiency (before each test)
- Purge time (≥ 2 times system response time and will be done before starting run 1, whenever the gas probe is removed and re-inserted into the stack, and after bias checks)
- Sample time (at least two times the system response time at each sample point)
- Sample flow rate (within approximately 10% of the flow rate established during system response time check)
- Interference checks for analyzers used will be included in the final test report
- Average concentration (run average ≤ calibration span for each run)
- Stratification test (to be done during run 1 at three(3) or twelve(12)
 points according to EPA Method 7E; Method 3A, if done for molecular
 weight only, will be sampled near the centroid of the exhaust;
 stratification is check not normally applicable for RATAs)

Manual Equipment QC Procedures On site quality control procedures include pre- and post-test leak checks on trains and pitot systems. If pre-test checks indicate problems, the system is fixed and rechecked before starting testing. If post-test leak checks are not acceptable, the test run is voided and the run is repeated. Thermocouples and readouts are verified in the field to read ambient prior to the start of any heating or cooling devices.

Sample Handling Samples taken during testing are handled to prevent contamination from other runs and ambient conditions. Sample containers are glass, Teflon™, or polystyrene (filter petri dishes) and are pre-cleaned by the laboratory and in the Horizon Engineering shop. Sample levels are marked on containers and are verified by the laboratory. All particulate sample containers are kept upright and are delivered to the laboratory by Horizon personnel.

Data Processing Personnel performing data processing double-check that data entry and calculations are correct. Results include corrections for field blanks and analyzer drift. Any abnormal values are verified with testing personnel and the laboratory, if necessary.

After results are obtained, the data processing supervisor validates the data with the following actions:

- verify data entry
- check for variability within replicate runs
- account for variability that is not within performance goals (check the method, testing, and operation of the plant)
- · verify field quality checks

Equipment Calibrations Periodic calibrations are performed on each piece of measurement equipment according to manufacturers' specifications and applicable test method requirements. The Oregon Department of Environmental Quality (ODEQ) <u>Source Testing Calibration Requirements</u> sheet is used as a guideline. Calibrations are performed using primary standard references and calibration curves where applicable.

Dry Gas Meters Dry gas meters used in the manual sampling trains are calibrated at three rates using a standard dry gas meter that is never taken into the field. The standard meter is calibration verified by the Northwest Natural Gas meter shop once every year. Dry gas meters are post-test calibrated with documentation provided in test reports.

Thermocouples Sample box oven and impinger outlet thermocouples are calibration checked against an NIST traceable thermocouple and indicator system every six months at three points. Thermocouple indicators and temperature controllers are checked using a NIST traceable signal generator. Readouts are checked over their usable range and are adjusted if necessary (which is very unusual). Probe thermocouples are calibrated in the field using the ALT-011 alternate Method 2 calibration procedure, which is documented on the field data sheet for the first run the probe thermocouple was used.

Pitots Every six months, S-type pitots are calibrated in a wind tunnel at three points against a standard pitot using inclined manometers. They are examined for dents and distortion to the alignment, angles, lengths, and proximity to thermocouples before each test. Pitots are protected with covers during storage and handling until they are ready to be inserted in the sample ports.

Nozzles Stainless steel nozzles are calibrated twice each year by checking for nicks or dents and making diameter measurements in triplicate. Quartz and borosilicate glass nozzles (and often stainless steel nozzles) are commonly calibrated in the field by taking the average of three consecutive diameter measurements. These field calibrations are recorded on the field data sheet for the first run the nozzle was used.

Correspondence Source Test Plan and Correspondence

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

March 24, 2016

Project No. 5702

Mr. George Davis Oregon Department of Environmental Quality Northwestern Region – Portland Office 700 NE Multnomah St., Suite 600 Portland, OR 97232

Mr. Michael Eisele, P.E. Oregon Department of Environmental Quality Western Region – Salem Office 4026 Fairview Industrial Drive Salem, OR 97302

Re: Source Testing:

Bullseye Glass Co. 3722 SE 21st Ave Portland, OR 97202

This correspondence is notice that Horizon Engineering is to do source testing for the above-referenced facility, tentatively scheduled for April 2016. This will serve as the Source Test Plan unless changes are requested prior to the start of testing.

- Source to be Tested: Glass Furnace T7
- 2. Test Locations: Baghouse BH-1 Inlet and Outlet
- 3. Purpose of the Testing: Performance testing for new baghouse
- 4. Source Description: Source description will be included in the final report.
- 5. Pollutants to be Tested: particulate matter (PM), Total Cr, and Cr⁺⁶.
- 6. **Test Methods to be Used:** Testing will be conducted in accordance with EPA methods in <u>Title 40 Code of Federal Regulations Part 60 (40 CFR 60)</u>, Appendix A, from the Electronic Code of Federal Regulations (<u>www.ecfr.gov</u>), January, 2014; Oregon Department of Environmental Quality (ODEQ) methods in <u>Source Sampling Manual Volume 1</u>, April, 2015.

Flow Rate: CO₂ and O₂: EPA Methods 1 and 2 (S-type pitot w/ isokinetic traverses) EPA Method 3A (NDIR and paramagnetic analyzers)¹

Moisture:

EPA Method 4 (incorporated w/ ODEQ Method 5)
ODEQ Method 5 (filterable and condensable PM; isokinetic

PM: ODEQ Method 5 (filte

impinger train technique)
Total Cr & Cr⁺⁶: SW-846 Method 0061 (isokinetic recirculatory impinger train

technique with Cr⁺⁶ analysis by IC with Post-Column Derivatization-Visible Absorption and Total Cr analysis by

ICP-MS)

- 7. Continuous Analyzer Data Recording: Data acquisition system (DAS) will be used. Strip chart records may be used as backup. One-minute averages of one-second readings are logged. Run averages, tabulated data and the graphic outputs from the DAS are included in the test reports.
- 8. **Continuous Analyzer Gas Sampling:** EPA Method 3A will be sampled at one point near the exhaust centroid because it is not done for a correction. Particulate and gas sampling will be simultaneous.
- Criteria Location: It is assumed today, but it will be confirmed on or before the test day, that each test port location meets criteria in EPA Methods 1 and 2.
- 10. Quality Assurance/Quality Control (QA/QC): Method-specific quality assurance/quality control procedures must be performed to ensure that the data is valid for determining source compliance. Documentation of the procedures and results will be presented in the source test report for review. Omission of this critical information may result in rejection of the data, requiring a retest. This documentation will include at least the following:

<u>Continuous analyzer procedures:</u> Field crews will operate the analyzers according to the test method requirements with additional data backup. Onsite procedures include:

EPA Method 3A:

- Analyzer calibration error before initial run and after a failed system bias or drift test (within ± 2.0% of the calibration span of the analyzer for the low, mid, and high-level gases or 0.5 ppmv absolute difference)
- System bias at low-scale (zero) and upscale calibration gases (within ± 5.0% of the calibration span or 0.5 ppmv absolute difference)
- Drift check (within ±3.0% of calibration span for low, and mid or high-level gases, or 0.5 ppmv absolute difference)
- System response time (during initial sampling system bias test)
- Checks performed with EPA Protocol 1 or NIST traceable gases except zero gas
- Zero gas meets the definition for zero air material as defined by 40 CFR 72.2
- Leak free sampling system
- Data acquisition systems record 10-second data points or one-minute averages of one second readings

¹ EPA Method 3A will only be measured at the baghouse outlet.

- Purge time (≥ 2 times system response time and will be done before starting run 1, whenever the gas probe is removed and re-inserted into the stack, and after bias checks)
- Sample time (at least two times the system response time at each sample point)
- Sample flow rate (within approximately 10% of the flow rate established during system response time check)
- Interference checks for analyzers used will be included in the final test report
- Average concentration (run average ≤ calibration span for each run)
- Stratification test (to be done during run 1 at three(3) or twelve(12) points according to EPA Method 7E; EPA Method 3A if done for molecular weight only will be sampled near the centroid of the exhaust; and stratification check not normally applicable for RATAs)

<u>Manual equipment procedures:</u> Field crews will operate the manual testing equipment according to the test method requirements. On-site procedures include:

- Operators will perform pre- and post-test leak checks on the sampling system and pitot lines.
- Thermocouples attached to the pitots and probes are calibrated in the field using EPA Alternate Method 11. A single-point calibration on each thermocouple system using a reference thermometer is performed. Thermocouples must agree within ±2°F with the reference thermometer. Also, prior to use, thermocouple systems are checked for ambient temperature before heaters are started.
- Nozzles are inspected for nicks or dents and pitots are examined before and after each use to confirm that they are still aligned.
- Pre- and post-test calibrations on the meter boxes will be included with the report, along with semi-annual calibrations of critical orifices, pitots, nozzles and thermocouples (sample box impinger outlet and oven, meter box inlet and outlet, and thermocouple indicators).
- Blank reagents are submitted to the laboratory with the samples. Liquid levels are marked on sample jars in the field and are verified by the laboratory.
- The Oregon Method 5, 7, and 17 minimum sample volume shall be the greater of 31.8 dscf or sufficient to ensure a minimum ISDL of one-half (1/2) the emission standard.

<u>SW-846 Method 0061:</u> Field crews will operate the manual testing equipment according to the test method requirements. On-site procedures include:

- 0.5 M KOH will be used to ensure that the pH of the solution is above 8.5 after sampling.
- pH of the impinger solution will be checked during sample recovery.
- The sample train will be purged with N₂ at a rate of 10 L/min for 30 minutes.
- If the stack temperature is above 200 ⁰F, the Teflon sample and recirculating lines may be placed in an ice bath to keep the recirculated reagent cool enough so it does not turn to steam.

Audit Sample Requirement: The EPA Stationary Source Audit Sample Program was restructured and promulgated on September 30, 2010 and was made effective 30 days after that date. The Standard requires that the Facility or their representative <u>must</u> order audit samples if they are available, with the exception of the methods listed in 40 CFR 60, 60.8(g)(1). The TNI website is referred to for a list of available accredited audit Providers and audits (<u>www.nelac-institute.org/ssas/</u>). If samples are not available from at least two accredited Providers they are not required. Currently, accredited Providers offer audit samples for EPA Methods 6, 7, 8, 12, 13A, 13B, 26, 26A, 29 and 101A. Based on the above, Bullseye Glass is not required to obtain audit samples for this test program.

- 11. Number of Sampling Replicates and their Duration: One (1) test run of approximately sixteen hours at each location. Inlet and outlet testing will be simultaneous. In no case will sampling replicates be separated by twenty-four (24) or more hours, unless prior authorization is granted by the Department.
- 12. **Reporting Units for Results:** Results will be expressed as concentrations (ppmv, μg/dscm. or gr/dscf), as rates (lb/hr), and on a production basis if that information is provided.

13. Horizon Engrg. Contact: Thomas Rhodes or

(503) 255-5050

Fax (503) 255-0505

E-mail <u>trhodes@montrose-env.com</u>

14. Consultant: John Browning

(503) 212-2515

Cell (503) 412-9842

E-mail jbrowning@bridgeh2o.com

15. Source Site Personnel: Dan Schwoerer

(503) 232-8887

Fax (503) 238-9963

E-mail <u>danschwoerer@bullseyeglass.com</u>

16. Regulatory Contacts: George Davis

(503) 229-5534

Fax (503) 229-6945

Email <u>davis.george@deq.state.or.us</u>

Michael Eisele

(503) 378-5070 Fax (503) 378-4196

E-mail EISELE.Michael@deg.state.or.us

- 17. Applicable Process/Production/Control Information: Operating data that characterize the source are considered to be:
 - Type and quantity of material being processed 1,200 to 1,350 pounds of batch materials to make dark green cathedral glass with a chromium content greater than 1.00%

 Furnace temperature – Furnace to be regulated between the temperature of 2,100°F and 2,575°F as per usual production parameters.

Redox settings – Combustion gasses to be mixed at a ratio of 1.02 to 1.20 parts natural gas for 2.0 parts oxygen as per usual production parameters

 Baghouse pressure drop – Pressure readings will be tracked during the testing cycle

All normally recorded process information

<u>Process/Production/Control information is to be gathered for each test run by the Source Site Personnel and provided to Horizon for inclusion in the report.</u>

The source must operate at the rate specified in the Permit during testing. Rates not in agreement with those stipulated in the Permit can result in test rejection for application to determine compliance or emission factor verification. Imposed process limitations could also result from atypical rates.

If the Permit does not specify a process rate for testing, we recommend a normal maximum rate.

- 18. Source Test Audit Report: Source Test Audit Report forms will be submitted along with the source test report for this testing.
- 19. Plant Entry & Safety Requirements: The test team will follow internal safety policies and abide by any site specific safety and entry requirements.
- 20. Responsibilities of Test Personnel: The test team will consist of one Project Manager and eight Technicians.
- 21. Tentative Test Schedule:

Day 1: Mobilize

Day 2: Test

Day 3: Demobilize

- 22. Other Considerations: The testing locations for the baghouse inlet are on a horizontal section of ducting. Depending on the port orientation, to prevent the recirculating impinger solution from draining out of the nozzle, the SW-846 Method 0061sample train may only be sampled from the horizontal port.
- 23. Administrative Notes: Unless notified prior to the start of testing, this test plan is considered to be approved for compliance testing of this source. A letter acknowledging receipt of this plan and agreement on the content (or changes as necessary) would be appreciated.

The Department will be notified of any changes in source test plans prior to testing. It is recognized that significant changes not acknowledged, which could affect accuracy and reliability of the results, could result in test report rejection.

Source test reports will be prepared by Horizon Engineering and will include all results and example calculations, field sampling and data reduction procedures, laboratory analysis reports, and QA/QC documentation. Source

test reports will be submitted to you within 45days of the completion of the field work, unless another deadline is agreed upon. Bullseye Glass should send one (1) hardcopy of the completed source test report to you at the address above.

Any questions or comments relating to this test plan should be directed to me.

Sincerely,

Thomas Rhodes, QSTI

District Manager

Horizon Engineering, an affiliate of Montrose Environmental Group, Inc.

For information on Horizon Engineering and Montrose Environmental, go to www.montrose-env.com

THIS IS THE LAST PAGE OF THE DOCUMENT

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 • www.horizonengineering.com

April 8, 2016

Project No. 5702

Mr. George Davis Oregon Department of Environmental Quality Northwestern Region – Portland Office 700 NE Multnomah St., Suite 600 Portland, OR 97232

Mr. Michael Eisele, P.E. Oregon Department of Environmental Quality Western Region – Salem Office 4026 Fairview Industrial Drive Salem, OR 97302

Re: Source Testing:

Bullseye Glass Co. 3722 SE 21st Ave Portland, OR 97202

This correspondence is notice that Horizon Engineering is to do source testing for the above-referenced facility, tentatively scheduled for April 2016. This will serve as the Source Test Plan unless changes are requested prior to the start of testing.

- 1. Source to be Tested: Glass Furnace T7
- 2. Test Locations: Baghouse BH-1 Inlet and Outlet
- 3. **Purpose of the Testing:** Performance testing for new baghouse. Cr⁺⁶ emissions will be estimated using the Cr⁺⁶ inlet results and the PM removal efficiency.
- 4. Source Description: Source description will be included in the final report.
- 5. **Pollutants to be Tested:** particulate matter (PM), Total Cr, and Cr⁺⁶.
- 6. **Test Methods to be Used:** Testing will be conducted in accordance with EPA methods in <u>Title 40 Code of Federal Regulations Part 60 (40 CFR 60)</u>, Appendix A, from the Electronic Code of Federal Regulations (<u>www.ecfr.gov</u>), January, 2014; Oregon Department of Environmental Quality (ODEQ) methods in <u>Source Sampling Manual Volume 1</u>, April, 2015.

Baghouse Inlet

Flow Rate:

EPA Methods 1 and 2 (S-type pitot w/ isokinetic traverses)

CO₂ and O₂: Moisture:

Assume same molecular weight as the outlet EPA Method 4 (incorporated w/ ODEQ Method 5)

PM:

ODEQ Method 5 (filterable and condensable PM; isokinetic

impinger train technique)

Total Cr & Cr⁺⁶: SW-846 Method 0061 (isokinetic recirculatory impinger train

technique with Cr⁺⁶ analysis by IC with Post-Column Derivatization-Visible Absorption and Total Cr analysis by

ICP-MS)

Baghouse Outlet

Flow Rate: Fixed Gases: EPA Methods 1 and 2 (S-type pitot w/ isokinetic traverses) EPA Method 3C (Tedlar bags with analysis by GC/TCD for

 CH_4 , N_2 , O_2 , & CO_2)

Moisture: PM:

EPA Method 4 (incorporated w/ ODEQ Method 5)

ODEQ Method 5 (filterable and condensable PM; isokinetic

impinger train technique)

- 7. Continuous Analyzer Data Recording: Data acquisition system (DAS) will be used. Strip chart records may be used as backup. One-minute averages of one-second readings are logged. Run averages, tabulated data and the graphic outputs from the DAS are included in the test reports.
- 8. Continuous Analyzer Gas Sampling: EPA Method 3A will be sampled at one point near the exhaust centroid because it is not done for a correction. Particulate and gas sampling will be simultaneous.
- 9. Criteria Location: It is assumed today, but it will be confirmed on or before the test day, that each test port location meets criteria in EPA Methods 1 and
- Quality Assurance/Quality Control (QA/QC): Method-specific quality assurance/quality control procedures must be performed to ensure that the data is valid for determining source compliance. Documentation of the procedures and results will be presented in the source test report for review. Omission of this critical information may result in rejection of the data. requiring a retest. This documentation will include at least the following:

Manual equipment procedures: Field crews will operate the manual testing equipment according to the test method requirements. On-site procedures include:

- Operators will perform pre- and post-test leak checks on the sampling system and pitot lines.
- Thermocouples attached to the pitots and probes are calibrated in the field using EPA Alternate Method 11. A single-point calibration on each thermocouple system using a reference thermometer is performed. Thermocouples must agree within ±2°F with the reference thermometer.

¹ It is anticipated that several Tedlar bag samples will be taken during the run to encompass the entire length of the test run.

Also, prior to use, thermocouple systems are checked for ambient temperature before heaters are started.

Nozzles are inspected for nicks or dents and pitots are examined before

and after each use to confirm that they are still aligned.

 Pre- and post-test calibrations on the meter boxes will be included with the report, along with semi-annual calibrations of critical orifices, pitots, nozzles and thermocouples (sample box impinger outlet and oven, meter box inlet and outlet, and thermocouple indicators).

Blank reagents are submitted to the laboratory with the samples. Liquid levels are marked on sample jars in the field and are verified by the

laboratory.

 The Oregon Method 5, 7, and 17 minimum sample volume shall be the greater of 31.8 dscf or sufficient to ensure a minimum ISDL of one-half (1/2) the emission standard.

<u>SW-846 Method 0061:</u> Field crews will operate the manual testing equipment according to the test method requirements. On-site procedures include:

• 0.5 M KOH will be used to ensure that the pH of the solution is above 8.5 after sampling.

pH of the impinger solution will be checked during sample recovery.

 pH of the impinger solution may be checked periodically during the test run. The sample train will be leak check before and after any disassembly that may be required. If additional KOH is added, the volume will be recorded.

The sample train will be purged with N₂ at a rate of 10 L/min for 30

minutes.

 If the stack temperature is above 200 ⁰F, the Teflon sample and recirculating lines may be placed in an ice bath to keep the recirculated reagent cool enough so it does not turn to steam.

Audit Sample Requirement: The EPA Stationary Source Audit Sample Program was restructured and promulgated on September 30, 2010 and was made effective 30 days after that date. The Standard requires that the Facility or their representative <u>must</u> order audit samples if they are available, with the exception of the methods listed in 40 CFR 60, 60.8(g)(1). The TNI website is referred to for a list of available accredited audit Providers and audits (<u>www.nelac-institute.org/ssas/</u>). If samples are not available from at least two accredited Providers they are not required. Currently, accredited Providers offer audit samples for EPA Methods 6, 7, 8, 12, 13A, 13B, 26, 26A, 29 and 101A. Based on the above, Bullseye Glass is not required to obtain audit samples for this test program.

- 11. Number of Sampling Replicates and their Duration: Three (3) test runs of approximately sixteen hours at each location. Inlet and outlet testing will be simultaneous. In no case will sampling replicates be separated by twenty-four (24) or more hours, unless prior authorization is granted by the Department.
- 12. **Reporting Units for Results:** Results will be expressed as concentrations (ppmv, μg/dscm. or gr/dscf), as rates (lb/hr), removal efficiency (%), and on a production basis if that information is provided.

4

13. Horizon Engrg. Contact: Thomas Rhodes or

(503) 255-5050

Fax (503) 255-0505

E-mail trhodes@montrose-env.com

14. Consultant: John Browning

(503) 212-2515

Cell (503) 412-9842

E-mail jbrowning@bridgeh2o.com

15. Source Site Personnel: Dan Schwoerer

(503) 232-8887

Fax (503) 238-9963

E-mail danschwoerer@bullseyeglass.com

16. Regulatory Contacts: George Davis

(503) 229-5534

Fax (503) 229-6945

Email davis.george@deg.state.or.us

> Michael Eisele (503) 378-5070

(503) 378-4196 Fax

E-mail EISELE.Michael@deg.state.or.us

17. Applicable Process/Production/Control Information: Operating data that characterize the source are considered to be:

Type and quantity of material being processed – 1,200 to 1,350 pounds of batch materials to make dark green cathedral glass with a high chromium content. Cullet will not be used during the source test.

Furnace temperature – Furnace to be regulated between the temperature of 2,100°F and 2,575°F as per usual production parameters.

Redox settings - Combustion gasses to be mixed at a ratio of 1.00 parts natural gas for 1.90 to 1.80 parts oxygen as per usual production parameters, in a furnace plumbed with natural gas and liquid oxygen

Baghouse pressure drop – Pressure readings will be tracked during the

testing cycle

All normally recorded process information

Process/Production/Control information is to be gathered for each test run by the Source Site Personnel and provided to Horizon for inclusion in the report.

The source must operate at the rate specified in the Permit during testing. Rates not in agreement with those stipulated in the Permit can result in test rejection for application to determine compliance or emission factor verification. Imposed process limitations could also result from atypical rates.

If the Permit does not specify a process rate for testing, we recommend a normal maximum rate.

- 18. Source Test Audit Report: Source Test Audit Report forms will be submitted along with the source test report for this testing.
- 19. Plant Entry & Safety Requirements: The test team will follow internal safety policies and abide by any site specific safety and entry requirements.
- 20. Responsibilities of Test Personnel: The test team will consist of one Project Manager and up to eight Technicians.
- 21. Tentative Test Schedule:

April 25 (Mon): Mobilize and setup April 26 (Tues): Begin test Run 1 April 27 (Wed): Begin test Run 2 April 28 (Thurs): Begin test Run 3

April 29 (Fri): Complete testing and demobilize

- 22. Other Considerations: None known
- 23. Administrative Notes: Unless notified prior to the start of testing, this test plan is considered to be approved for compliance testing of this source. A letter acknowledging receipt of this plan and agreement on the content (or changes as necessary) would be appreciated.

The Department will be notified of any changes in source test plans prior to testing. It is recognized that significant changes not acknowledged, which could affect accuracy and reliability of the results, could result in test report rejection.

Source test reports will be prepared by Horizon Engineering and will include all results and example calculations, field sampling and data reduction procedures, laboratory analysis reports, and QA/QC documentation. Source test reports will be submitted to you within 45 days of the completion of the field work, unless another deadline is agreed upon. Bullseye Glass should send one (1) hardcopy of the completed source test report to you at the address above.

Any questions or comments relating to this test plan should be directed to me.

Sincerely,

Thomas Rhodes, QSTI

District Manager

Horizon Engineering, an affiliate of Montrose Environmental Group, Inc.

For information on Horizon Engineering and Montrose Environmental, go to www.montrose-env.com

THIS IS THE LAST PAGE OF THE DOCUMENT

Department of Environmental Quality

Western Region Salem Office 4026 Fairview Industrial Dr SE Salem, OR 97302 (503) 378-8240 FAX (503) 373-7944 TTY 711

April 12, 2016

Eric Durrin Bullseye Glass Company 3722 SE 21st Ave Portland, OR 97202

Thomas Rhodes Horizon Engineering 13585 NE Whitaker Way Portland, OR 97230

Re:

Bullseye Glass Company ACDP Permit 26-3135-ST-01 Source Test Plan

Eric Durrin and Thomas Rhodes:

DEQ originally received the source test plan for testing the emissions from glass furnace T7 located at Bullseye Glass in Portland, OR on March 21, 2016. DEQ received the first revised plan on March 25, 2016, and final revised plan on April 8, 2016. The final plan details the methods and approach to determine the emission rate and removal efficiency of particulate matter (PM) from the baghouse inlet and exhaust, and the measurement of total chromium (Cr) and hexavalent chromium (Cr⁺⁶) at the baghouse inlet. DEQ has reviewed the source test plan and is approving it with the following conditions:

GENERAL PROCESS CONDITIONS

- 1.) Only regular operating staff may adjust the production process and emission control parameters during the source performance tests and within two (2) hours prior to the tests. Any operating adjustments made during the source performance tests, which are a result of consultation during the tests with source testing personnel, equipment vendors or consultants, may render the source performance test invalid. Any adjustments made during the test must be recorded and included in the test report.
- 2.) Testing shall be performed while the furnace is making glass with the highest percentage of chromium normally used. The furnace must also be fired in the most oxidizing condition under which chromium containing glass is normally made. The ingredients in the batch must be the most oxidizing ingredients normally used to make chromium containing glass. Documentation stating and explaining this must be provided in the test report.

- 3.) During source testing the following process parameters must be monitored, recorded, and documented in the source test report. The process parameters below are to be reported for each individual test run and averaged for all test runs, if appropriate.
 - Amount of total chromium in the batch (lbs)
 - Type and quantity of material being processed
 - Oxygen usage (quantity used, hourly minimum)
 - Natural gas usage (quantity used, hourly minimum)
 - Furnace temperature (°F, hourly minimum)
 - Baghouse pressure drop (inches of water column, twice per test run)
 - Weight of charges during each batch (lbs)
 - Time of charges
 - Weight of finished product (lbs)
 - Duration of the charging period (hrs)
 - Duration of refining period (hrs)
 - All other normally recorded information

TOTAL CHROMIUM & HEXAVALENT CHROMIUM (EPA SW-846 METHOD 0061) CONDITIONS

- 4.) During sampling, make sure other sampling equipment is not interfering with isokinetic sampling.
- 5.) Take steps to minimize the blockage effects of the sampling probe in the test duct/stack.
- 6.) Testing must be performed using two ports located 90 degrees from each other.
- 7.) The sample shall be collected in a different plane (i.e., different set of ports and a port at a different angle) than the inlet particulate sample.
- 8.) To ensure that representative chromium samples are collected during these extended test intervals (~16 hours), four sequential traverses should be performed on each of the two ports. For example, sampling points should be moved every ten minutes (120 minutes per traverse), rather than performing a single traverse (40 minutes per point). The test run only needs to include one port change.
- 9.) Ensure the recirculating KOH cannot be lost out the sampling nozzle.
- 10.) With the exception of the sampling nozzle (glass) and the silica gel impinger, all of the sampling train components (including connecting fittings) shall be Teflon.

- 11.) In Section 10, Horizon notes that the pH of the KOH sample solution will be measured after the completion of the testing, which is required by the method. Given the duration of the testing you may, to make sure the pH of the absorbing solution remains above 8.5, momentarily pause the test to check the pH periodically throughout the run (e.g., every few hours). Any pH data collected shall be documented on the field data sheet. Leak checks must be completed any time the sampling system is opened. Leak checks of the equipment and any gain in volume by the dry gas meter due to the leak checks must also be documented on the field data sheets. Correct the final sample volume by the amount collected during the leak checks and use the corrected sample volume amount for emissions calculations.
- 12.) Equation 7.6.4 of the method has an error. If Horizon opts to perform a blank correction, please use the following equation:

```
m = [(S, ug/ml * Vls, ml) - (B, ug/ml * 300 ml)] \times d
```

(Note: The above equation assumes that the impingers are initially charged with 300 mls of the KOH reagent)

- 13.) Verify the KOH recirculation rate is at least 50 ml/min.
- 14.) Record the mitrogen purge rate and duration.
- 15.) Following purging and filtration, the sample solution is to be transferred to polyethylene sample bottles.
- 16.) Following the test, the impinger solution shall be purged with nitrogen and filtered through an acetate membrane filter (0.45 um pore size); refer to Section 5.4.3 of the method.
- 17.) The volume of DI water used to rinse the sampling train directly affects the detection limit. The volume should be sufficient to quantitatively rinse the train; it should not be excessive. We recommend that a pre-measured volume of rinse water (e.g., 100 mls) be provided to the sample recovery person so that the same amount of rinse is used for each test.
- 18.) Take steps to make sure the level of hexavalent chromium in the KOH reagent is as low as possible before testing begins.
- 19.) Meticulously follow the procedures in section 7.1.2 to make sure the sampling trains are free of contaminates.
- 20.) The hexavalent chromium analyses are to be completed within 14 days of sample collection (Section 6.3 of the method).
- 21.) Hexavalent and total chromium test results must be reported as indicated below for each individual test run and averaged for all three test runs. Hand calculations must be provided for at least one test run.
 - ng/dscm
 - lbs/hr
 - Ibs/ton of chromium processed
 - lbs/ton of glass produced

- 22.) Use the particulate removal efficiency to calculate the emission rate of hexavalent and total chromium emissions. Report results as indicated below for each individual test run and averaged for all three test runs. Hand calculations must be provided for at least one test run.
 - ng/dscm
 - lbs/hr
 - Ibs/ton of chromium processed
 - lbs/ton of glass produced

Note that Item 22 data (baghouse *exhaust* chromium emissions) shall be clearly denoted in the report's summary table(s) as 'calculated (vs. measured) values'.

FLOW RATE AND MOISTURE (EPA METHODS 1, 2, & 4) CONDITIONS

- 23.) The exhaust duct configurations and flow measurements must meet the EPA Methods 1/1A & 2 criteria. Documentation including clear diagrams must be provided in the source test report.
- 24.) The sample locations must be checked for cyclonic flow. Documentation of this must be provided in the test report.
- 25.) Ensure that the manometer used to record pressure readings meets the criteria of Method 2 Section 6.2.
- 26.) Moisture content of the exhaust stack gas must be determined by EPA Method 4 for each test run. In addition, Section 12.1.7 of EPA Method 4 states "In saturated or moisture droplet-laden gas streams, two calculations of the moisture content of the stack gas shall be made, one using a value based upon the saturated conditions (alternate method) and one based upon the results of the impinger analysis (EPA Method 4). If this is the case, then ODEQ Method 4 (wet bulb/dry bulb) shall be used as the alternative method. At a minimum, two measurements of moisture content using ODEQ Method 4 shall be made for each run and averaged for the run. The lower of the two values as determined by EPA Method 4 and ODEQ Method 4 shall be considered correct for each run.

EXHAUST GAS COMPOSITION (EPA METHOD 3C/ASTM METHODS 1946) CONDITIONS

- 27.) N₂, O₂, CO₂, CO, CH₄, C₂H₆, and C₃H₈ concentrations must be determined to calculate the molecular weight of the exhaust. Collect sample at a constant rate over the duration of the test run. Record the sampling rate on the field data sheet.
- 28.) Immediately after the completion of the test run, close the bag valve and keep the bag under positive pressure until the sample is analyzed to ensure any leakage of the bag will not dilute the sample. A band around the bag should be sufficient to accomplish this although other measures may be taken that accomplish the same result. In the event that multiple bags are collected, record the start and end times of the collection periods.
- 29.) Analyze each bag separately and time weight the concentrations to get an average molecular weight over the duration of each test run.

30.) EPA Method 3A is cited in the test plan, DEQ understands that this is an inaccuracy and that Method 3A will not be used during this testing program. The methods referenced in this section will be used to determine the molecular weight in place of Method 3A.

PARTICULATE MATTER (EPA/ ODEQ METHOD 5) CONDITIONS

- 31.) During sampling, make sure other equipment is not interfering with isokinetic sampling.
- 32.) Additional (i.e., empty) impingers may be added between the second and fourth impinger to collect condensate from the flue gas.
- 33.) At the inlet sampling location, the particulate sample shall be collected in a different plane (i.e., different set of ports and a port at a different angle) than the chromium sample is being collected.
- 34.) Take steps to minimize the blockage of the sampling location with sampling equipment.
- 35.) To ensure that representative particulate samples are collected during these extended test intervals (~16 hours), four sequential traverses should be performed on each of the two ports. For example, sampling points should be moved every ten minutes (120 minutes per traverse), rather than performing a single traverse (40 minutes per point). The test run only needs to include one port change.
- 36.) If the filter becomes plugged to the point in which isokinetics can no longer be maintained pause the inlet and outlet sampling. Leak check the sampling system with the clogged filter; replace the filter; repeat the check the sampling system; make note of the dry gas meter's volume displacement caused by the leak checks; and continue testing. Correct the final sample volume by the amount collected during the leak checks and use the corrected sample volume amount for emissions calculations.
- 37.) For ODEQ Method 5, the method quantifiable limit (MQL) is 7 mg of PM, which should be taken into consideration when targeting a minimum sample volume and when calculating results. If less than 7 mg is collected, calculations shall be based not on the actual mass of PM collected but on the MQL of 7 mg as a "less than quantifiable limit" value.
- 38.) For both the inlet and outlet of the baghouse provide filterable, condensable and total PM test results. The results must be reported as follows for each test run and averaged for all three test runs. Complete hand calculations must be provided for at least one test run.
 - gr/dscf
 - Ib/hour
 - Ib/ton of glass produced
 - % removal efficiency based on lb/hour of the inlet and outlet results

GENERAL TESTING CONDITIONS

- 39.) The ODEQ must be notified of any changes in the source test plan and/or the specified methods prior to testing. Significant changes not acknowledged by the DEQ could be basis for invalidating an entire test run and potentially the entire testing program. Documentation of any deviations must include an evaluation of the impact of the deviation on the test data. Deviations may result in rejection of the data, requiring a retest.
- 40.) Method-specific quality assurance/quality control (QA/QC) procedures must be performed to ensure that the data is valid. Documentation of the procedures and results shall be presented in the source test report for review. Omission of this critical information will result in rejection of the data, requiring a retest.
- 41.) A copy of a completed Source Test Audit Report (STAR) for all applicable Methods performed must accompany the submittal of the Source Test Report. A copy of the STAR forms is available electronically from the regional source test coordinator.
- 42.) In an attempt to conserve natural resources and to minimize storage space requirements, the test report should be printed on both sides of each page within the document. DEQ recognizes this may not be feasible for some supporting documentation (i.e. figures, maps, etc.).
- 43.) The source test report shall be submitted to the DEQ within 45 days following the completion of the source test.

DEQ understands that the source test is scheduled for April 26-28, 2016. If you have any questions, please contact me at (503) 378-5070.

Sincerely,

Mike Eisele, PE

AQ Source Test Coordinator

Western Region-Salem

cc: George Davis, DEQ: NWR-AQ File

Quality Assurance Documentation MAQS QSTI/QI Certification Dates Qualified Individual (QI) Certificates QMS Statement of Conformance

그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그		
en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co		
and the second of the second o		
rentant de la companya de la companya de la companya de la companya de la companya de la companya de la compan La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co		
· · · · · · · · · · · · · · · · · · ·	"我们们还是我们的,我们们还没有一定,我们还没有一个一个一个,我们就是不是不是不是一个,我们不是不是一个,我们们就是这个一个一个一个一个一个一个一个一个一个一个	

QSTI Certification Expiration Dates

QSTí Employee	Cert.	Group 1 E	xpirations	Group 2 Expirations		Group 3 Expirations		
26 April 2016	No.	Certificate	Exam (QI)	Certificate	Exam (QI)	Certificate	Exam (QI)	
Andy Vella	2008-247	24 December 2017	24 June 2017	24 June 2017	24 June 2017	25 June 2017	25 June 2017	
Brett Sherwood		-	25 February 2021	-	26 February 2021	-	-	
Carl Slimp	2009-362	22 May 2018	22 May 2018	26 March 2018	26 March 2018	31 July 2018	31 July 2018	
C. David Bagwell	2005-022	29 March 2020	29 March 2020	-	17 December 2020	29 March 2020	29 March 2020	
Chris Hinson	2014-830	5 September 2018	5 September 2018	27 October 2018	27 October 2018	21 November 2018	21 November 20:	
Danny Phipps	2016-915	16 December 2020	16 December 2020	17 December 2020	17 December 2020	16 March 2021	17 March 2021	
David Wagner	2012-658	3 April 2017	3 Aprìl 2017	3 April 2017	3 April 2017	3 April 2017	3 April 2017	
Jason French	2013-771	19 March 2018	5 August 2017	19 March 2018	11 December 2017	19 March 2018	6 August 2017	
Joe Heffernan III	2009-325	16 December 2020	16 December 2020	16 December 2020	16 December 2020	23 March 2019	25 March 2018	
John Lewis	2011-550	28 January 2020	28 July 2020	29 January 2020	29 January 2020	-	25 February 202	
Mark Stanfield	2009-337	25 January 2020	25 January 2020	-	-	5 April 2020	5 April 2020	
Mihai Voivod	2016-916	25 February 2021	26 February 2021	29 July 2020	29 July 2020	17 December 2020	17 December 202	
Robert Rusi	2012-656	19 March 2017	19 March 2017	19 March 2017	19 March 2017	19 March 2017	19 March 2017	
Scott Chesnut	2012-655	19 March 2017	19 March 2017	19 March 2017	19 March 2017	19 March 2017	19 March 2017	
Tom Lyons	2012-721	30 July 2017	24 June 2017	30 July 2017	24 June 2017	30 July 2017	25 June 2017	
Thomas Rhodes	2010-408	16 December 2020	16 December 2020	17 December 2020	17 December 2020	14 April 2020	25 March 2018	
QSTI Employee	Cert.	Group 4 E	xpirations	Group 5 E	xpirations			
26 April 2016	No.	Certificate	Exam (QI)	Certificate	Exam (QI)		2	
Andy Vella	2008-247	9 March 2020	9 March 2020	-	-			
Brett Sherwood	-	-	-	٠.	-			
Carl Slimp	2009-362		22 December 2018					
C. David Bagwell	2000 002	22 December 2018	77 necember 2018	-	-			
Chris Hinson	2005-022	22 December 2018 -	11 December 2017	-	-			
		-		-		the state of the s	*	
	2005-022	- 9 February 2019	11 December 2017	-	-			
Danny Phipps David Wagner	2005-022 2014-830	- 9 February 2019 17 March 2021	11 December 2017 9 February 2019	- - -	-			
Danny Phipps	2005-022 2014-830 2016-915	9 February 2019 17 March 2021 3 April 2017	11 December 2017 9 February 2019 18 March 2021	- - - -	-			
Danny Phipps David Wagner	2005-022 2014-830 2016-915 2012-658	9 February 2019 17 March 2021 3 April 2017 19 March 2018	11 December 2017 9 February 2019 18 March 2021 3 April 2017	- - - - -	-			
Danny Phipps David Wagner Jason French	2005-022 2014-830 2016-915 2012-658 2013-771	9 February 2019 17 March 2021 3 April 2017 19 March 2018 17 December 2020	11 December 2017 9 February 2019 18 March 2021 3 April 2017 11 December 2017	- - - - -	-			
Danny Phipps David Wagner Jason French Joe Heffernan III	2005-022 2014-830 2016-915 2012-658 2013-771 2009-325	9 February 2019 17 March 2021 3 April 2017 19 March 2018 17 December 2020 24 August 2016	11 December 2017 9 February 2019 18 March 2021 3 April 2017 11 December 2017 17 December 2020					
Danny Phipps David Wagner Jason French Joe Heffernan III John Lewis	2005-022 2014-830 2016-915 2012-658 2013-771 2009-325 2011-550	9 February 2019 17 March 2021 3 April 2017 19 March 2018 17 December 2020 24 August 2016 5 April 2020	11 December 2017 9 February 2019 18 March 2021 3 April 2017 11 December 2017 17 December 2020 26 February 2021	- - - - -				
Danny Phipps David Wagner Jason French Joe Heffernan III John Lewis Mark Stanfield	2005-022 2014-830 2016-915 2012-658 2013-771 2009-325 2011-550 2009-337	9 February 2019 17 March 2021 3 April 2017 19 March 2018 17 December 2020 24 August 2016 5 April 2020	11 December 2017 9 February 2019 18 March 2021 3 April 2017 11 December 2017 17 December 2020 26 February 2021	- - - - -				
Danny Phipps David Wagner Jason French Joe Heffernan III John Lewis Mark Stanfield Mihai Volvod	2005-022 2014-830 2016-915 2012-658 2013-771 2009-325 2011-550 2009-337 2016-916	- 9 February 2019 17 March 2021 3 April 2017 19 March 2018 17 December 2020 24 August 2016 5 April 2020 - 19 March 2017	11 December 2017 9 February 2019 18 March 2021 3 April 2017 11 December 2017 17 December 2020 26 February 2021 5 April 2020	- - - - - -	- - - - - -			
Danny Phipps David Wagner Jason French Joe Heffernan III John Lewis Mark Stanfield Mihai Voivod Robert Rusi	2005-022 2014-830 2016-915 2012-658 2013-771 2009-325 2011-550 2009-337 2016-916 2012-656	- 9 February 2019 17 March 2021 3 April 2017 19 March 2018 17 December 2020 24 August 2016 5 April 2020 - 19 March 2017 19 March 2017	11 December 2017 9 February 2019 18 March 2021 3 April 2017 11 December 2017 17 December 2020 26 February 2021 5 April 2020 - 19 March 2017	- - - - - -	- - - - - -			

^{**}Red type indicates expired certification or QI as of date above**

^{**}Orange type indicates certification/QI within 6 months of expiration from data above**

^{**}Green type indicates certification/QI valid for greater than 6 months from date above**

SOURCE EVALUATION SOCIETY

Qualified Source Testing Individual

LET IT BE KNOWN THAT

JASON T. FRENCH

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR

MANUAL GAS VOLUME MEASUREMENTS AND ISOKINETIC PARTICULATE SAMPLING METHODS

ISSUED THIS 20TH DAY OF MARCH 2013 AND EFFECTIVE UNTIL MARCH 19TH, 2018

Peter R. Westlin, QSTI/QSTO Review Board

7. Takan

Peter S. Pakalnis, QSTI/QSTO Review Board

C. David Ramuel OSTIOSTO Review Board

ham I lajor Hills

Karen D. Kajiya-Mills , QSTI/QSTO Review Board

Glenn C. England, QSTI/QSTO Review Board

APPLICATION NO. 2013-771

2013-771

SOURCE EVALUATION SOCIETY

Qualified Source Testing Individual

LET IT BE KNOWN THAT

MIHAI V. VOIVOD

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR

MANUAL GAS VOLUME MEASUREMENTS AND ISOKINETIC PARTICULATE SAMPLING METHODS

ISSUED THIS 26TH DAY OF FEBRUARY 2016 AND EFFECTIVE UNTIL FEBRUARY 25TH, 2021

Rosewill

Peter R. Westlin, QSTI/QSTO Review Board

A. Andahi

Peter S. Pakainis, QSTI/QSTO Review Board

Therea M. Lowe

Theresa Lowe, QSTI/QSTO Review Board

C. David Bagwell, QSTI/QSTO Review Board

Haren D. Kejin-Hills.

Karen D. Kajiya-Mills , QSTI/QSTO Review Board

NO. 2016-916

Bruce Randall QSTI/QSTO Review Board

From: Theresa Lowe < tf lowe@yahoo.com > Sent: Wednesday, March 9, 2016 5:34:32 PM

To: Brett Sherwood Cc: Gail Westlin

Subject: QSTI Score - Brett M. Sherwood

THIS EMAIL IS THE OFFICIAL NOTIFICATION OF YOUR SES QUALIFIED SOURCE TESTING INDIVIDUAL OR OBSERVER (QSTI/QSTO) EXAM(S) RESULTS (Please Print Out for Your Records)

To:	Brett M. Sherwood
Employed by:	Montrose Environmental
Phone:	503-255-5050
Email:	bsherwood@montrose-env.com

The Source Evaluation Society, through its contract with Eastern Technical Associates, has received the score of the exam(s) you completed on the date(s) as listed below. You are required to receive a score of 40 to pass an exam. As noted below, a "P" indicates you passed the exam, a "DNP" indicates that you did not pass the exam.

Group #	Exam	Date of Exam	Exam #	Score	Status
1	EPA Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods	2/25/16	12713		P
1A	Stack Gas Flow Rate Measurements Sampling Methods				
2	EPA Manual Gaseous Pollutants Source Sampling Methods	2/26/16	12715		P
3	EPA Gaseous Pollutants Instrumental Methods				
4	EPA Hazardous Metals Measurement Methods				
5	Part 75 CEMS RATA Testing				٠.

NOTE: (1) The ECMPS AETB reporting requirements include a provision for an email address to be noted for the exam provider. Your exam provider is the Source Evaluation Society. Please use the following email address: qstiprogram@gmail.com. (2) Your exam score(s), per ASTM D7036-04, will be applicable for five years. You will need to retake your exam(s) before expiration in order to maintain a current status. You are responsible for keeping track of scheduling for your re-test.

If you passed one or more exams, you are eligible to apply for your SES QSTI/QSTO qualification approval(s). To complete the qualification process, you will need to do the following: For New Applications / Additional Group Certificates / Renewals: Please check the SES Website (www.sesnews.org) under the link for the "SES QSTI/QSTO Program" for directions on how to apply for your certificate or contact Gail Westlin at gail westlin@yahoo.com or Theresa Lowe at the lowe@yahoo.com.

If a QSTI/QSTO candidate receives notice that he or she did not pass a SES methods group exam(s), the QSTI/QSTO candidate ask the Committee for a review of their exam(s). Any review request should be sent to gail_westlin@yahoo.com or tf_lowe@yahoo.com. As part of the review, the Committee will provide references to methods for those questions missed.

Jason French, as an employee of Montrose Air Quality Services, LLC (M.	AQS
gn this Quality Management System Conformance Statement to verify that I have read and unde	ersta
ne requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manua urthermore, I understand my role in the company as it pertains to the Quality Management Syste	
urthermore, Funderstand my fole in the company as it pertains to the Quality Management Syste	
·	

Employee Signature

I CHRIS HINSON as an employ	ee of Montrose Air Quality Services, LLC (MAQS),
sign this Quality Management System Conformance S	atement to verify that I have read and understand
the requirements set forth in the MAQS Quality Policy	Statement and in the MAQS Quality Manual.
Furthermore, I understand my role in the company as	it pertains to the Quality Management System.
Employee Signs ture	8/14/15

I John Sterling Lewis sign this Quality Management Syste			
the requirements set forth in the M	AQS Quality Policy Stater	ment and in the MAQS Qu	ıality Manual.
Furthermore, I understand my role	in the company as it pert	lains to the Quality Manag	ement system.

Employee Signature

I The Hermone, I understand my role in the company as it pertains to the Quality Management System.

Employee Signature

as an employee of Montrose Air Quality Services, LLC (MAQS),

sign this Quality Management System (Conformance Statement to verify that I have read and und	erstand
the requirements set forth in the MAQS	S Quality Policy Statement and in the MAQS Quality Manua	al.
Furthermore, I understand my role in the	he company as it pertains to the Quality Management Syst	em.
	*	
:		
Red Shumo	9/17/15	
Employee Signature	Date	

I Brandon Crawford, as an employee of Montrose Air Quality Services, LLC (MAQS), sign this Quality Management System Conformance Statement to verify that I have read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

Employee Signature

I Nihon Voivod , as an employee of Montrose Air Quality Services, LLC (MAQS) sign this Quality Management System Conformance Statement to verify that I have read and understar the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.	

Patrick Toda	, as an employee of Montrose Air Quality Services, LLC (MAQS),
sign this Quality Management Syste	m Conformance Statement to verify that I have read and understand AOS Quality Policy Statement and in the MAQS Quality Manual.
Furthermore, I understand my role i	n the company as it pertains to the Quality Management System.

Employee Signature

I Paul L. Berce, as an emplosign this Quality Management System Conformance the requirements set forth in the MAQS Quality Policifications of the company and	Statement to verify that I have read and understand y Statement and in the MAQS Quality Manual.
Faul I Beree Employee Signature	2/17/16 Date

I Josh Mushielle, as an employee of Montrose Air Quality Services, LLC (MAQS),	,
sign this Quality Management System Conformance Statement to verify that I have read and understan	ıd
the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual.	
Furthermore, I understand my role in the company as it pertains to the Quality Management System.	

Employee Signature

I Sleight Halling, as an employ sign this Quality Management System Conformance Sthe requirements set forth in the MAQS Quality Policy Furthermore, I understand my role in the company as	Statement and in the MAQS Quality Manual.
Employee Signature	2/25/16 Date

I ________, as an employee of Montrose Air Quality Services, LLC (MAQS), sign this Quality Management System Conformance Statement to verify that I have read and understand the requirements set forth in the MAQS Quality Policy Statement and in the MAQS Quality Manual. Furthermore, I understand my role in the company as it pertains to the Quality Management System.

Employee Signature

I Mauri Fabio	, as an employee of Montrose Air Quality Services, LLC (MAQS),
	m Conformance Statement to verify that I have read and understand
	AQS Quality Policy Statement and in the MAQS Quality Manual. In the company as it pertains to the Quality Management System.
-	
	5/17/2016
Employee Signature	Date '

Personnel Qualifications

JASON T. FRENCH, QSTI PROJECT MANAGER

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Qualified Source Test Individual (QSTI) Application #2013-771
 - O Group |, Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods
 - o Group II, Manual Gas Source Sampling Methods
 - o Group III, Gaseous Pollutants Instrumental Methods
 - Group IV, Hazardous Metals Measurements
- B.S. in Mechanical Engineering from the University of South Florida in Tampa, Florida, 2004
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- Certified Visible Emissions Evaluator
- · Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

PROFESSIONAL MEMBERSHIPS

Source Evaluation Society (SES)

PROFESSIONAL EXPERIENCE

Jason French joined Horizon Engineering in February 2011. His previous experience includes working for 5 years as a staff engineer with an environmental and construction company based in Tallahassee, Florida as well as working for the Florida Department of Environmental Protection. He performs source emission testing and related activities, including writing quotes and source test protocols, field sampling, test equipment maintenance and calibration, equipment preparation, in-field data recording, calculations and training. He is thoroughly trained in all EPA source testing procedures and also experienced using methods from the National Council for Air & Stream Improvement (NCASI), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), American Society for Testing and Materials (ASTM) and many regional (Pacific Northwest and Northern California) agency methods.

JOHN S. LEWIS, QSTI (GI, II, IV) FIELD TECHNICIAN II

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Qualified Source Test Individual (QSTI)
 - o Group I, Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods
 - o Group II, Manual Gaseous Pollutants Source Sampling Methods
 - o Group IV, Hazardous Metals Measurements
- B.S. in Social Science and Geography from Frostburg State University, 1998
- Certified Visible Emissions Evaluator
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

PROFESSIONAL MEMBERSHIPS

Source Evaluation Society (SES)

PROFESSIONAL EXPERIENCE

John Lewis has been with Horizon Engineering since 2008. He brings six years of prior experience working in education, transportation, and roof restoration system installation. He has performed source tests at hundreds of industrial sources. He performs source emission testing and activities related to source emission testing, including field sampling, test equipment maintenance and calibration, equipment preparation, and in-field data recording. He is thoroughly trained in all EPA source test procedures 2008-present. He is also experienced using methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

JOSEPH M. HEFFERNAN III, QSTI (GI-IV) PROJECT MANAGER/TEAM LEADER

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Qualified Source Test Individual (QSTI)
 - o Group I, Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods
 - Group II, Manual Gas Source Sampling Methods
 - o Group III, Gaseous Pollutants Instrumental Methods
 - o Group IV, Hazardous Metals Measurements
- B.S. in Physical Education from Northern Illinois University, 1999
- · Minor in Marketing, with emphasis in Sports Marketing
- · Certified Visible Emissions Evaluator
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

PROFESSIONAL DEVELOPMENT

Stationary Source Sampling and Analysis for Air Pollutants (SSSAAP) Conference, 2008, 2011

PROFESSIONAL MEMBERSHIPS

Source Evaluation Society (SES)

PROFESSIONAL EXPERIENCE

Joe Heffernan has been with Horizon Engineering since 2004. He brings four prior years experience from another air pollution testing organization in Illinois for a total of more than 12 years of professional experience in the field of air quality. He has performed source tests at hundreds of industrial sources domestically and internationally and has developed the skills necessary to earn the title of Project Manager. He performs source emission testing and activities related to source emission testing, including field sampling, test equipment maintenance and calibration, equipment preparation, and in-field data recording. He is thoroughly trained in all EPA source test procedures 2000-present. He is also experienced using methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

Chris Hinson, E.I.T., QSTI (GI-IV) PROJECT MANAGER

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Qualified Source Test Individual (QSTI)
 - o Group I, Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods
 - Group II, Manual Gas Source Sampling Methods
 - o Group III, Gaseous Pollutants Instrumental Sampling Methods
 - Group IV, Hazardous Metals Measurement Sampling Methods
- Engineer in Training (E.I.T.) Certification
- Bachelors of Science, Nuclear Engineering, 2012 Purdue University
- Certified Visible Emissions Evaluator
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

PROFESSIONAL EXPERIENCE

Chris Hinson has been with Horizon Engineering, LLC since 2014. He has performed source tests at hundreds of industrial sources. He performs source emission testing and activities related to source emission testing, including field sampling, laboratory analysis, test equipment maintenance and calibration, equipment preparation, in-field data recording and calculations. Chris has performed greenhouse gas testing and monitoring at many different facilities. He is also experienced using methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

MIHAI VOIVOD FIELD TECHNICIAN II

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Qualified Individual (QI)
 - o Group II, Manual Gas Source Sampling Methods, (passed exam, application pending)
- B.S. in Biotechnical and Ecological Systems Engineering from Babes Bolyai University in Cluj, Romania, 2009
- · Certified Visible Emissions Evaluator
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- · Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

PROFESSIONAL EXPERIENCE

Mihai Voivod has been with Horizon Engineering since September 2012. He brings 3 years of prior professional experience in the electronics manufacturing industry working for Silicon Forest Electronics in Vancouver, Washington and during an internship at a Romanian laboratory. At Horizon, he performs source emission testing and activities related to source emission testing, including field sampling, test equipment fabrication, maintenance, and calibration, equipment preparation, and in-field data recording. He is being trained to perform all EPA source test procedures and is also learning methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

His experience in the electronics manufacturing industry included operating a selective solder machine and an automated optical inspection (AOI) machine. His education specialty was laboratory sampling analysis and instrumentation operation and troubleshooting.

BRANDON CRAWFORD FIELD TECHNICIAN I

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- B.S. in Environmental Science from Oregon State University, Corvallis, Oregon, 2013,
 Specialized in Environmental Conservation and Sustainability
- Certified Visible Emissions Evaluator
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- DOT dangerous goods ground shipping training
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

PROFESSIONAL EXPERIENCE

Brandon Crawford has been with Horizon Engineering since June 2014. He brings previous industrial experience as an intern for ATI Albany Operations/Wah Chang. He is being trained to perform source emission testing and activities related to source emission testing, including field sampling, test equipment maintenance and calibration, equipment preparation, and in-field data recording. He is being trained in all EPA source test procedures 2002-present. He is also learning to use methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

BRETT SHERWOOD FIELD TECHNICIAN I

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- B.S. in Environmental Science from Washington State University, Pullman, Washington, 2012
- Certificate in Geographic Information Systems, University of Washington, 2013
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- · Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

PROFESSIONAL EXPERIENCE

Brett Sherwood has been with Horizon Engineering, LLC since June 2014. His previous experience included survey work performing APS surveying and mapping, working as an environmental technician for the King County Department of Natural Resources and Parks performing surface and groundwater sampling, and working as a technician with the State of Washington Department of Fish and Wildlife ocean sampling program. He is being trained to perform source emission testing and activities related to source emission testing, including field sampling, test equipment maintenance and calibration, equipment preparation, and in-field data recording. He is receiving training in all EPA source test procedures from 2002 to present. He is also learning to use methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

PATRICK A. TODD SHOP STEWARD/FIELD TECHNICIAN

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Working towards Associates of Facility Maintenance Technology at Portland Community College
- Certified Visible Emissions Evaluator
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

PROFESSIONAL EXPERIENCE

Patrick Todd has been with Horizon Engineering since 2009. He is the shop steward and equipment maintenance expert. He performs source emission testing and activities related to source emission testing, including field sampling, test equipment maintenance and calibration, equipment preparation, and in-field data recording. He is thoroughly trained in all EPA source test procedures 2009-present. He is also experienced using methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

Josh Muswieck FIELD TECHNICIAN I

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- B.S. in in Environmental Science, Oregon Institute of Technology, Klamath Falls, Or 2015
- Opacity & Visual Emissions Certified (EPA Method 9)
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protections, MSDS review, toxic and hazardous substances)
- DOT Medical Card
- Transportation Worker Identification Credential (TWIC) approved
- Respirator Fit-Tested
- Red Cross First Aid & CPR Certified
- Aerial Boom/Scissor Lift Certified Operator

PROFESSIONAL EXPERIENCE

Josh Muswieck joined Horizon Engineering in 2016. He has previous work experience as a Biological Science Technician for the USGS and Research Assistant for Oregon Tech Environmental Science Department. He is receiving training in all EPA source test procedures and is also learning to use methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

PAUL LAWAI'A BERCE FIELD TECHNICIAN I

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- B.S. in Environmental Science from Oregon State University, Corvallis, Oregon, 2015
- C-Stop certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- DOT Medical Card
- Transportation Worker Identification Credential (TWIC) approved
- Respirator fit tested
- Lift equipment operator certified

PROFESSIONAL EXPERIENCE

Paul Berce has been with Montrose Air Quality Service since February 2016. His previous experience included work as an invasive species eradication Field Associate 1 for the Maui Invasive Species Committee, a non-profit, community and county funded organization on Maui, Hawaii. There, he led field crews on eradication and containment of target plant and animal species through survey methodologies and point source treatment. He was trained in the proper identification/handling of chemicals (pesticides and herbicides) and their responsible and proper application. He is receiving training in all EPA source test procedures and is learning to use methods from the National Council for Air &Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

SLEIGHT HALLEY FIELD TECHNICIAN I

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- B.S. in Chemistry from Carroll College, Helena, Montana, 2012
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- DOT Medical Card
- Transportation Worker Identification Credential (TWIC) Approved

PROFESSIONAL EXPERIENCE

Sleight Halley has been with Horizon Engineering since January, 2016. His previous experience included work as an analytical chemist with Analytical 360 LLC in Yakima, Washington. He is receiving training in all EPA source test procedures and is also learning to use methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

THOMAS A. RHODES, E.I.T., QSTI (GI-IV) DISTRICT MANAGER

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Qualified Source Test Individual (QSTI)
 - o Group I, Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods
 - o Group II, Manual Gaseous Pollutants Source Sampling Methods
 - o Group III, Gaseous Pollutants Instrumental Methods
 - o Group IV, Hazardous Metals Measurements
- Engineer in Training (E.I.T.) Certification, 2001
- B.S. in Chemical Engineering from University of California in Santa Barbara, 2001
- Attended Allan Hancock College in Santa Maria, California, 1996-1998
- Certified Visible Emissions Evaluator
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- North Slope Training Co-operative class for Unescorted North Slope Safety Orientation (Awareness Level)
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

PROFESSIONAL DEVELOPMENT

Stationary Source Sampling and Analysis for Air Pollutants (SSSAAP) Conference, 2008

PROFESSIONAL MEMBERSHIPS

- Source Evaluation Society (SES)
- American Chemical Society (ACS)

PROFESSIONAL EXPERIENCE

Thomas Rhodes has been with Horizon Engineering since 2002. He brings three prior years experience as an engineering associate and engineering intern for several companies. He has performed source tests at hundreds of industrial sources. He performs source emission testing and activities related to source emission testing, including field sampling, test equipment maintenance and calibration, equipment preparation, and in-field data recording. He is thoroughly trained in all EPA source test procedures 2002-present. He is also experienced using methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

MICHAEL E. WALLACE, P.E. SENIOR ENGINEER

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Professional Engineer (P.E.) from the State of Oregon, 2002-present
- B.S. in Mechanical Engineering from Oregon State University in Corvallis, Oregon, 1989
- Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

PROFESSIONAL DEVELOPMENT

Stationary Source Sampling and Analysis for Air Pollutants (SSSAAP) Conference, approximately
 5 years

PROFESSIONAL MEMBERSHIPS

Source Evaluation Society (SES)

PROFESSIONAL EXPERIENCE

Mike Wallace has been with Horizon Engineering since 1991. He is responsible for performing calculations, formulating spreadsheets, quality assurance review, and operating Horizon's gas chromatograph. He is thoroughly trained in all EPA source test procedures 1991-present. He is also experienced using methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

ANDY VELLA, P.E., QSTI (GI-IV) ENGINEER TECHNICAL WRITER

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- Professional Engineer (P.E.) Oregon license #87091PE
- Qualified Source Test Individual (QSTI)
 - Group I, Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods
 - o Group II, Manual Gas Source Sampling Methods
 - o Group III, Gaseous Pollutants Instrumental Sampling Methods
 - o Group IV, Hazardous Metals Measurement Sampling Methods
- B.S. in Chemical Engineering from University of Illinois in Urbana, IL, 2005
- Minor in Mathematics
- Certified Visible Emissions Evaluator
- C-Stop Certified (includes refinery operations, industrial accident prevention, PPE, LOTO, HAZCOM/HAZMAT, confined space, emergency response, respiratory protection, MSDS review, toxic and hazardous substances)
- Aerial Platform Certified
- Transportation Worker Identification Credential (TWIC) Approved
- International Air Transport Association (IATA) Trained
- · Respirator Fit-Tested
- Adult CPR Certified
- Standard First Aid Certified

PROFESSIONAL MEMBERSHIPS

Source Evaluation Society (SES)

PROFESSIONAL EXPERIENCE

Andras Vella has been with Horizon Engineering since 2011. He brings six prior years experience from Clean Air Engineering in Illinois. His primary duty before joining Horizon was FTIR repair, operation, and data review. He has performed source tests at hundreds of industrial sources. He performs source emission testing and activities related to source emission testing, including field sampling, test equipment maintenance and calibration, equipment preparation, in-field data recording, data reduction and analysis, quality assurance review and report preparation. He is thoroughly trained in all EPA source test procedures 2005-present. He is also experienced using methods from the National Council for Air & Stream Improvement (NCASI), Oregon Department of Environmental Quality (ODEQ), California Air Resource Board (CARB), National Institute for Occupational Health and Safety (NIOSH), Occupational Safety and Health Administration (OSHA), and the American Society for Testing and Materials (ASTM).

MAURI FABIO TECHNICAL REPORT WRITER

EDUCATION/PROFESSIONAL CERTIFICATIONS/TRAINING

- B.A. in Geology from University of Hawaii at Manoa in Honolulu, HI, 2011
- Certified Visible Emissions Evaluator
- Adult CPR Certified
- Standard First Aid Certified

PROFESSIONAL EXPERIENCE

Mauri Fabio joined Horizon Engineering in 2016. Her current responsibilities include data reduction and analysis, quality assurance review, and report preparation. She has a year experience with the United Stated Geological Survey (USGS) with laboratory analysis, data collection and processing, testing, field research, report preparation, and mapping preparation. She has experience with laboratory instrumentation such as a scanning electron microscopy (SEM) and energy dispersive x-ray microanalysis (EDS). Field work and data collection in Death Valley and worked with the deformation group at the USGS on Mt. Hood for reconnoitering potential sites for remote instrumentation.

·					
	·				
		•			
					·
	•				
		•			

Total Chromium & Hexavalent Chromium Data Collection

Description of Total Chromium & Hexavalent
Chromium Testing
Raw Analytical Test Results for Cr & Cr+6
Field Data Sheets Relating to Cr & Cr+6 Testing

Total Chromium and Hexavalent Chromium Data Collection

The source testing of Glass Furnace T7 and Baghouse BH-1 on April 26-29, 2016 included testing of total chromium and chromium VI per EPA Method 0061. The purpose of this testing was to establish a maximum allowable chromium III usage rate based on potential chromium VI emissions pursuant to temporary rules provided in OAR 340-244-9040.

Bullseye is not proposing to use the April 26-29, 2016 Method 0061 testing to establish a maximum allowable chromium III usage rate. The preliminary data received and a subsequent evaluation of the operating parameters during the test indicate the data is inconclusive and is not representative of past or future operating conditions.

Analytical data for total chromium and chromium VI and field data collected during the testing is included in this report. The data shows significant variation of potential chromium emissions across the three test runs indicating inconclusive results. In addition, chromium VI was detected in most of the samples at concentrations above the total chromium results indicating potential interference.

Further, in order to lower the furnace exhaust gas temperatures to protect the Teflon probes required by Method 0061, ambient air was introduced into the furnace exhaust stream prior to entering the baghouse. Introducing ambient air into the furnace exhaust likely influenced the detected levels of chromium VI during the test. The furnace exhaust configuration combined with the ambient air cooling methods used during the source test is not representative of past or future source operation planned at the facility and Bullseye is not requesting that DEQ approve a chromium usage rate based on these results. If Bullseye seeks a future maximum chromium III usage rate pursuant to the procedures described in OAR 340-244-9040, a new source test plan will be submitted to DEQ for review and approval.

HORIZON ENGINEERING

PROJECT: 57202-BULLSEYE GLASS

CLIENT # H007 REPORT # 16-271

> SUBMITTED BY: CHESTER LabNet 12242 S.W. GARDEN PLACE TIGARD, OR 97223 (503)624-2183/FAX (503)624-2653 www.ChesterLab.Net

CHESTER LabNet

12242 SW Garden Place * Tigard, OR 97223-8246 * USA Telephone 503-624-2183 Fax 503-624-2653 www.chesterlab.net

Case Narrative

Date: May 5, 2016

General Information

Client:

Horizon Engineering

Client Number:

H007

Report Number:

16-271

Sample Description:

Impinger Trains

Sample Numbers:

16-S425 - 14-S447

Analysis

Analytes:

Cr VI, Total Cr

Analytical Protocols:

SW-846 Method 0061

Analytical Notes:

IC-PCR was used to measure hexavalent chromium and ICP was used to measure total chromium. The filter and probe rinse samples were digested per EPA method 29 and taken to 250 mL prior to analysis by ICP. Results have not been

blank corrected.

QA/QC Review:

All of the data have been reviewed by the analysts performing the analyses and the project manager. All of the quality control and sample-specific information in this package is complete and meets or exceeds the minimum requirements for acceptability.

Comments:

If you have any questions or concerns regarding this analysis, please feel free to

contact the project manager.

Disclaimer:

This report shall not be reproduced, except in full, without the written approval of

the laboratory. The results only represent that of the samples as received into the

laboratory,

Project Manager

5/5/16

Paul Duda

Client: H007 - Horizon Engineering 238

Report Number: 16-271

Lab ID: 16-S425

Client ID: 1A Teflon Filter Inlet

Site: Bullseye Glass

Sample Date: 4/27/16 Sample Volume: 250. mL

μg/sample Analyte MDL Conc. Conc. MDL

Total Cr 32.4 0.500 8.11 0.125

Lab ID: 16-S426

Client ID: 1A HNO3 Rinse Inlet

Site: Bullseye Glass

Sample Date: 4/27/16 Sample Volume: 250. mL

μg/L μg/sample Analyte Conc. MDLConc. \mathtt{MDL} 0.500 Total Cr 45.8 11.5 0.125

Lab ID:

16-S427

Client ID: Site:

1A KOH Imp Inlet Bullseye Glass

Sample Date: 4/27/16 Sample Volume: 500. mL

μg/L µg/sample Analyte Conc. MDL MDLConc. Cr VI 1040 0.020 518. 0.010 Total Cr 1070 0.500 536. 0.250

Lab ID: 16-S428

Client ID: 1B Teflon Filter Inlet

Site: Bullseye Glass

Sample Date: 4/27/16 Sample Volume: 250. mL

μq/L µg/sample \mathtt{MDL} Analyte Conc. Conc. MDL 0.500 20.5 0.125 Total Cr 82.0

Lab ID:

16-S429

Client ID:

1B HNO3 Rinse Inlet

Site: Sample Date: 4/27/16

Bullseye Glass

Sample Volume: 250. mL

μg/L μg/sample Analyte Conc. MDLConc. \mathtt{MDL} Total Cr 16.7 0.500 4.17 0.125 H007 - Horizon Engineering

Report Number: 16-271

Lab ID:

16-5430

1B KOH Imp Inlet Client ID: Site: Bullseye Glass

Sample Date: 4/27/16 Sample Volume: 460. mL

	μς	g/L	μg/sa	mple
Analyte	Conc.	MDL	Conc.	\mathtt{MDL}
Cr VI Total Cr	559. 549.	0.020	257. 253.	0.009

Lab ID:

16-S431

Client ID:

1C Teflon Filter Inlet

Site:

Bullseye Glass

4/27/16Sample Date:

Sample Volume: 250. mL

μg/L μg/sample Conc. \mathtt{MDL} Conc. 8.78 0.125 35.1 0.500

Lab ID:

Analyte

16-S432

Client ID:

Total Cr

1C HNO3 Rinse Inlet

Bullseye Glass Site:

Sample Date:

4/27/16

Sample Volume: 250. mL

	μg.	/L	μg/sa	mple
Analyte	Conc.	MDL	Conc.	\mathtt{MDL}
	10.0	0 500	4.57	0 105
Total Cr.	18.3	0.500	4.0/	0.125

Lab ID:

16-S433

Client ID: Site:

1C KOH Imp Inlet

Sample Date:

Bullseye Glass

4/27/16 Sample Volume: 485. mL

	μς	ı/L	μg/sa	mple
Analyte	Conc.	\mathtt{MDL}	Conc.	MDL
Cr VI	2050	0.020	994.	0.010
Total Cr	1990	0.500	964.	0.242

Lab ID:

16-S434

Conc.

Client ID:

2 Teflon Filter Inlet

 \mathtt{MDL}

Site:

Bullseye Glass 4/28/16

Sample Date:

Sample Volume: 250. mL

μg/sample \mathtt{MDL} Conc.

Analyte Total Cr

0.500 33.6

 $\mu g/L$

8.39 0.125 Client: H007 - Horizon Engineering 240

Report Number: 16-271

Lab ID: 16-S435

Client ID: 2 HNO3 Rinse Inlet

Site: Bullseye Glass

Sample Date:

4/28/16

Sample Volume: 250. mL

μg/L µg/sample Analyte Conc. MDLConc. MDL Total Cr 8.04 0.500 2.01 0.125

Lab ID:

16-S436

Client ID:

2 KOH Imp Inlet Bullseye Glass

Site: Sample Date:

4/28/16

Sample Volume: 480. mL

μg/L µg/sample Analyte Conc. MDL Conc. MDL 1,030 Cr VI 0.020 2160 0.010 Total Cr 2020 0.500 972. 0.240

Lab ID:

16-S437

Client ID:

3 Teflon Filter Inlet

Site:

Bullseye Glass

Sample Date: 4/29/16

Sample Volume: 250. mL

μg/L μg/sample Analyte Conc. MDLConc. Total Cr 0.500 . 9.22 36.9 0.125

Lab ID:

16-S438

Client ID:

3 HNO3 Rinse Inlet

Site: Sample Date:

Bullseye Glass 4/29/16

Sample Volume: 250. mL

μg/sample µg/L Analyte Conc. MDLConc. MDL

Total Cr

2.74 0.500 0.684 0.125

MDL

Lab ID:

16-S439

Client ID: Site:

3 KOH Imp Inlet Bullseye Glass

Sample Date:

4/29/16

Sample Volume: 545. mL

μg/L μg/sample Analyte Conc. \mathtt{MDL} Conc. \mathtt{MDL} Cr VI 790. 0.020 431. 0.011 Total Cr 790. 0.500 431. 0.272

H007 - Horizon Engineering

Report Number: 16-271

Lab ID:

16-S440

3 Teflon Filter Outlet Client ID:

Site:

Bullseye Glass 4/29/16

Sample Date:

Sample Volume: 250. mL

Analyte

 \mathtt{MDL} Conc.

µg/sample MDL Conc.

Total Cr

0.500 26.1

6.52 0.125

Lab ID:

16-S441

Client ID:

3 HNO3 Rinse Outlet

Site:

Bullseye Glass 4/29/16

Sample Date: Sample Volume: 250. mL

Analyte

µg/L MDLConc.

µg/sample Conc. MDL

Total Cr

1.10 0.500

0.125 0.276

Lab ID:

16-S442

Client ID: Site:

3 KOH Imp Outlet Bullseye Glass

Sample Date:

4/29/16

Sample Volume: 485. mL

µg/L

Analyte Cr VI

Conc. \mathtt{MDL} 205. 0.020

 \mathtt{MDL} Conc. 99.4 0.010 95.8 0.242

µg/sample

Total Cr

Client ID:

Lab ID:

0.500 198.

16-5443 Filter Blank #1

Site: Sample Date: Bullseye Glass 4/28/16

Sample Volume: 250. mL

Analyte

μg/L \mathtt{MDL} Conc.

μg/sample Conc. MDL

Total Cr

0.500 < MDL

0.125 < MDL

Lab ID:

16-S444

Client ID: Site:

Filter Blank #2 Bullseye Glass

Sample Date: Sample Volume: 250. mL

4/28/16

Conc.

µg/sample Conc. MDL

Total Cr

Analyte

< MDL 0.500

μg/L \mathtt{MDL}

> 0.125 < MDL

242

Client:

H007 - Horizon Engineering

Report Number: 16-271

Lab ID: Client ID:

16-S445 H2O Blank Bullseye Glass

Site: Sample Date:

4/28/16

Sample Volume: 250. mL

μg/L \mathtt{MDL} Conc.

µg/sample Conc. \mathtt{MDL}

Total Cr

Analyte

< MDL 0.500 < MDL 0.125

Lab ID:

16-5446

Client ID: Site:

0.1N HNO3 Blank Bullseye Glass

Sample Date:

Sample Volume: 250. mL

4/28/16

Analyte

μg/L Conc. MDL

μg/sample MDL Conc.

Total Cr 0.500 < MDL

< MDL 0.125

Lab ID: Client ID: 16-S447 KOH Blank

Site:

Cr VI

Total Cr

Bullseye Glass 4/28/16

Sample Date: Sample Volume: 790. mL

Analyte

μg/L Conc. \mathtt{MDL} 1.06 0.020 0.843 0.500

μg/sample Conc. MDL 0.837 0.016 0.666 0.395

QA/QC Report

Client Name:

Horizon Engineering

Project Number: H007
Analytical Technique: ICP - Optima 8300
Sample Description: SW-846 0061 filter and probe rinse

Sample Description: Report Number:

16-271

Blank Data

Analyte	Sample	Measured	MDL
	ID	Conc. μg/L	Conc. µg/L
Cr	ICB	< MDL	0.500
Cr	Prep_Blk	< MDL	0.500
Cr	CCB	< MDL	0.500
Cr	CCB	< MDL	0.500
Cr	CCB	< MDL	0.500

^{*:} Method Blank concentration in $\mu g/filter$

Calibration QC

Analyte	Sample	Standard	Measured	Percent
	ID	Conc. µg/L	Conc. μg/L	Recovery
Cr Cr Cr Cr Cr	ICV CRI CCV CCV CCV CCV	2500 2.50 2500 2500 2500 2500	2510 2.74 2420 2450 2380 2320	100.3 109.6 96.7 98.0 95.4 92.8

CRI Limits: 70% - 130% Recovery

Replicate Data

Analyte	Sample ID	Sample Conc. µg/L	Replicate Conc. μg/L	RPD
Cr	16-S425	32.45	34.73	6.79
Cr	16-S426	45.84	45.12	1.58
Cr	16-S440	26.07	26.78	2.69
Cr	16-S441	1.105	0.820	29.6 #

RPD = {(sample-replicate)/[(sample+replicate)/2]}x100

 $\ensuremath{\text{N/C}}\xspace$. RPD is not calculated when sample or replicate is below detection limit

#: per EPA CLP protocol, control limits do not apply if sample and/or

replicate concentration is less than 5x the detection limit

Laboratory Control Sample/Matrix Post Spike Analysis

Analyte	Sample	Sample	Spike	Spike	Percent
	ID	Conc. µg/L	Conc. µg/L	Amount µg/L	Recovery
Cr	16-S428	82.05	2451.	2500.	94.8
Cr	16-S429	16.68	2374.	2500.	94.3
Cr	16-S440	26.07	2461.	2500.	97.4
Cr	16-S441	1.105	2376.	2500.	95.0

Percent Recovery = (spike - sample)/spike amount*100

QA/QC Limits Continuing Calibration: ± 10%

Duplicates: 20% RPD

LCS: ± 20% Spikes: ± 25%

^{*:} per EPA CLP protocol, control limits do not apply if spike concentration is less than 25% of the sample concentration

QA/QC Report

Client Name:

Horizon Engineering

Project Number:

H007

Analytical Technique: IC-PCR Sample Description: SW-846

SW-846 Method 0061 Impinger Catch

Report Number:

16-271

<u>Blank Data</u>

Analyte	Sample	Measured	MDL
	ID	Conc. μg/L	Conc. μg/L
Cr VI	CCB	< MDL	0.020
Cr VI	CCB	< MDL	0.020

^{*:} Method Blank concentration in $\mu g/filter$

Calibration QC

Analyte	Sample	Standard	Measured	Percent
	ID	Conc. µg/L	Conc. μg/L	Recovery
Cr VI	CCA	1.00	0.98	97.9
Cr VI		1.00	0.95	95.2

Duplicate Data

Analyte	Sample ID	Sample Conc. µg/L	Replicate Conc. μg/L	RPD
Cr VI	16-S427	1040	1010	2.64

RPD = {(sample-duplicate)/[(sample+duplicate)/2]}x100

 $\ensuremath{\text{N/C}}\xspace$. RPD is not calculated when sample or duplicate is below detection limit

Laboratory Control Sample/Matrix Spike Analysis

Analyte	Sample	Sample	Spike	Spike	Percent
	ID	Conc. µg/L	Conc. µg/L	Amount µg/L	Recovery
Cr VI	16-8439	790.	1810	1000	102.

^{*:} per EPA CLP protocol, control limits do not apply if spike concentration is less than 25% of the sample concentration

QA/QC Limits Continuing Calibration: ± 10%

Replicates: ± 20% RPD

LCS: ± 20%

Post Spikes: ± 25%

^{#:} per EPA CLP protocol, control limits do not apply if sample and/or duplicate concentration is less than 5x the detection limit

QA/QC Report

Client Name:

Horizon Engineering

Project Number: H007
Analytical Technique: ICP - Optima 8300
Sample Description: SW-846 Method 0061 Impinger Catch

Report Number:

16-271 _______

Blank Data

Analyte	Sample ID	Measured Conc. μ g/L	MDL Conc. μg/L
Cr	CCB	< MDL	0.500
Cr	CCB	< MDL	0.500

^{*:} Method Blank concentration in µg/filter

Calibration QC

Analyte	Sample	Standard	Measured	Percent
	ID	Conc. µg/L	Conc. μg/L	Recovery
Cr	ICV	2500	2480	99.4
Cr	CRI	2.50	2.55	102.2
Cr	CCV	2500	2510	100.5

CRI Limits: 70% - 130% Recovery

Duplicate Data

Analyte	Sample ID	Sample Conc. µg/L	Duplicate Conc. μg/L	RPD
Cr	16-5427	1071.	1075.	0.37

RPD = {(sample-duplicate)/[(sample+duplicate)/2]}x100

 $\ensuremath{\text{N/C}}\xspace$ RPD is not calculated when sample or duplicate is below detection limit

Laboratory Control Sample/Matrix Spike Analysis

Analyte	Sample	Sample	Spike	Spike	Percent
	ID	Conc. µg/L	Conc. µg/L	Amount µg/L	Recovery
Cr	16-S430	549.3	2821.	2500.	90.9

^{*:} per EPA CLP protocol, control limits do not apply if spike concentration is less than 25% of the sample concentration

^{#:} per EPA CLP protocol, control limits do not apply if sample and/or duplicate concentration is less than 5x the detection limit

CHESTER LABNET SOURCE SAMPLE RECEIPT CHECKLIST

Client	Horizon	Date _	5/2/16
# Runs	6 + 81Ks	Report #	
Custody S	eals Inspected, If Present		Nn
Chain-of-C	Custody Form Inspected		
	CoC present with samples?		*
	CoC indicate analytical method	ology to be used? (eg M29 e	etc) [!
	CoC indicate if compliance test		Not States
	M26 samples have Thiosulfate		<u> </u>
	M29 indicate FH/BH separate o	or combined?	NA III
	Has Form Been Signed?	alanced Dane Nated on Form	-3
	Have Date and Time Custody R	eleased Been Noted on Forn	nr
Ali Sample	e Containers Inspected		
	Does Number of Samples Mate		
	Do All Sample ID Numbers Mat		
	Did client mark sample volum	·	,
	If required by method, did clier		ment?
	Are the Sample Containers Into	ictr	- · ·
	Are signs of leakage present?		N_{α}
Chain-of-	Custody Form Signed and Dated b	y CLN	
Correctiv	e Actions		
	Client Contacted Due to Misma		<u></u>
	Client Contacted Due to Broke		4311
	Client Contacted Due to Leakir		
	Client contacted for verificatio	_·	Aller
	Corrective Actions Documente		/ `
	Corrective Actions Accomplish	ear	
Items ma	arked shall be addressed prior	to any analytical work bei	ng started .
items mo	arked * shall be noted in case n	arrative upon reporting of r	esults to client
Clanad	1-802		
Signed	- October		
Notes			
		·····	· · · · · · · · · · · · · · · · · · ·

Company Name				
HOFTON Eng				_
Contact		Phon		
Thomas Rhad	e5	503	<u> - 255-6050</u>	2
E-Mail Address		Fax		1
* + rhodes@m	ontrove-	- EUN.	<u>യന</u>	_
Report Address				-
13585 NE WW	tcke -	Wan		_
City	State		Zip	
City	0	<u></u>	97730	
Billing Address				-
Same				_
City	State		Zip	
***************************************				_
PO#	Project		n. 1	1.
	5	702	- Bollsege G	(N

CHESTER LabNet

12242 SW Garden Place Tigard, OR 97223 (503) 624-2183 Fax (503) 624-2653 cln@chesterlab.net

CHAIN-OF-CUSTODY RECORD

Analysis Requested

Page ____ of ____

Turn Around Time

☐ Standard

														Specify
LabNet ID	Field Sample ID	Site	Sample Date	Volume (m³)	Particle Size			-						Remarks
16-5425	IA teflon fille	-laley	4/27/16											·
47þ	IA HNO Ring		1.1											
427	IA KOH Ima.	Inlet	į, e					_						
428,424, 430			ft		<u> </u>		5		-					3 Samples
Ų 3(,Ų32,ų33	10 (Same as 1)	Met	\t				1							3 Samples
434, 435, 436	2 (some as IA	Inlet	4/2016			0			<	E			.	3 Samples
	3 (same as IA)		4124/16				1	<u>) O</u>	` `					3 samples
<u>તત્રુપત્ર,પત્રે</u>	3 (swee	Soutlet	4129/16											3 Samples
16-2445	H20 Black		4/28/16	·										,
3446	OLN HNOSE	dank -	4/28/16											·
5447	KON Black		4/28/16					.,						
443, 944	Filter Blank	5(x2)	4/28/16	p' magazantesis — r	1	المرا	2							Total Samples: Z sample
Relinquished	By: (Signature) Da	te/Time	Received By	(Signature) D	ate/Time	57 N	otes		Tot	a =	<u>ک</u> در	mpl.	e5%	23
	d By: (Signature) Da		Received By	(O)	ate/Time 5 · 2 · 16		E	PA	00	D6!	Ą	aks	Sis o	on ALL Samples for Crb

HORIZON ENGINEERING 16-5702

RAW DATA

Available upon request

1388 NEI Whitliar Way Product (90) 25-560 MONTRONE Product (90) 25-560 MONTRONE Product (90) 25-560 MONTRONE Product (90) 25-560 MONTRONE Product (90) 25-560 MONTRONE Product (90) 25-560 MONTRONE Product (90) 25-560 MONTRONE Product (90) 25-560 MONTRONE Product (90) 25-560 MONTRONE Product (90) 25-560 MONTRONE PRODUCT (90) 25-560 MONTRONE PRODU		v					<u>r</u>	icid Data	Silvet							
Perform CH3 258-595-595 MONTROSE Page (2003) 258-6055 Date W 1/2C / 1/2C December 1/2 (1/2C) / 1/2C Concentral Valling (NSAC 5 Ran 8 1 Operator 3Dhrs. L. Support 206 H Operator 3Dhrs. L. Support 206	ľ	and the second s		LOCAL STEE ST	71.54.1 317.							Client: (Bullse	ne G	255	
Charles Proceeding Subsection Charles	l	A	£7€.			ау	ONIT	100	2 <i>I</i> L =	Fa	cility Lo	cation:	Portla	J, OR		l l
The part 1/2			1',			1	MAC	π_{O}	T			Source:	forna	CC.	-7 30-160	i i se
Test Mellow Coc 2 3 100 3 100		AIR OUALLY	Y YIRVICES	take to the continue to the first to the	55-0505	(_	,	. 0						°F
Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Ambient Temperature, Temperature, Ambient Tempera							_		3103	Post-Test			7775			-damaged)
Name Support					>		3	3110	["	Pitot Lk I				~ 1/1	Post	
Opening for Charles Ch	. '	Run#						ATT A11				7 2103			Ontlet	
Note 10					300 H.)F	Std TC (T	ALI-011 D/°E) (3L/)	83			20102	GVCII	Heat	Set -	- °F
Press, Stutic (Print)		Moisture .	~1090	Tdb	TW	rb —	Stack TC	(ID/°F) 2-2/	<u> 183 </u>	Meter Bo	x 2					
Triment Section Control Cont	,	Press., Sta	tic (Pstat)	30 Pre	ss., Bar (Pb	29.90	Contin	uity Check) oi. ↑							
Name Name	1						Velocity Head					OVEN	IMPINGER		1	
130 365 29 020 169 17 172		Point	Time		CII	ı,			ACTUAL	1 " 1		°F	Ŧ	"F	°F	inHg
112 10 365.29 ,020 ,169 ,17 172 / (67 82 82 44 112 20 114 115 ,989 ,99 119 67 82 81 44 115 ,10 30 374 61 ,080 694 ,69 112 60 86 81 14 ,99 40 377 38 ,032 ,268 ,27 138 60 90 82 3 ,8 50 380 67 ,050 ,419 ,42 187 62 92 84 3 ,7 60 383 96 ,046 ,373 ,37 161 62 72 84 3 ,7 60 70 82 3 ,7 60 383 96 ,046 ,373 ,37 161 62 72 84 3 ,7 60 70 82 3 ,7 60 383 96 ,046 ,373 ,37 161 62 72 84 3 ,7 60 70 82 3 ,7 60 383 96 ,046 ,373 ,37 161 62 72 84 3 ,7 60 70 82 3 ,7 60 381 - ,051 ,383 ,38 212 62 72 84 3 ,7 60 381 - ,051 ,383 ,38 212 62 74 81 87 3 ,7 60 391 80 ,013 ,097 ,10 215 60 96 89 2 ,7 70 96 80 96 80 96 80 96 80 96 80 96 80 96 80 96 96 96 96 96 96 96 96 96 96 96 96 96			(dt)	130			Ì		(0H)						Amb:	
11 20	į	\2	lh.	(100	<u>365.</u> 36 5	29	0.70	1169	417	172	1	(67	82	82	4
30 374 6 .080 694 69 112 .080 82 3		F							,99	119			ا مسا	82		4
9 40 377 38 .032 .268 .27 138		F			374	61	.080	C014		112			61	96	`	4
8 50 380 67 1050 1419 142 187		 			317	38	_*	,268	.27	138		5	60	 	82	3
383.96 ,046 ,373 ,37 G1		, 8	50		380	.67	,050	,419	,42	187			63	89	<u>93</u>	3
1		, 7	Ç6		383	96	,046	,373		161			C2	92		3
3 10 392 45 .050 .375 .38 215 .63 9489 3 .37 .38 .215 .60 96 89 2 .37 .38 .215 .38 .215 .39 .20 .394 .80 .013 .097 .10 .215 .70	Þ	7 G	76	104050	385	935	,016	,132	,13				62	93		
3 60 394 80 ,013 ,097 ,10 215		8 5	Bo		389		,051	,383			1	_	G4	γ_I		
1 1 1 1 1 1 1 1 1 1		9 4	90		392	45	,050				_/		63	77		
1 1 1 1 1 1 1 1 1 1		10 3	100		394	<u>.86</u>	,013	,097	 			/-	60	76		
2 100 377.00 1039.1270 128 171 172 174 175 177 171 172 174 175		11 2	(10		397	.00	1023			186	/-	<u> </u>	00	76	<u> </u>	
13 130 409 38 ,033 ,245 ,25 227 56 760 92 83 150 413 84 ,106 ,781 ,78 232 58 98 92 5 .		12	120		399	<u>. 88 </u>				141	<u> </u>	-		<u> </u>	<u> </u>	3
15 7 150		13	130		406		, 181	. '				 /·		<u> </u>	<u> </u>	2
15 / 166		14 2	140		409						 \		-			
16 4 160		15 3	150		413		<u> </u>				1 -	1		-		
17 180 424.05 .044 ,342 ,34 193 63 99 92 3 18 C 180 424.05 .044 ,342 ,34 193 63 99 92 3 19 7 190 426.89 ,030 .248 ,25 153 63 98 93 3 20 8 200 429.03 .019 ,145 ,15 204 63 96 93 3 21 9 210 431.11 .019 ,139 ,14 236 65 95 92 3 22 10 210 433.22 ,021 ,162 ,16 195 / 65 95 92 3 23 11 230 233 435 651 .028 ,216 ,22 196 61 95 91 3 24 12 240 2143 438.30 ,029 ,234 ,23 165 65 91 94 91 3		16 4	160		417	.96					/	-				7
18 C 180		17 5	<u> </u>	<u> </u>			 		<u> </u>		H	 				
19 / 170 120.81 ,030 ,019 ,145 ,15 204 63 96 93 3		18 🗘		ļ	424	<u>.05</u>		<i></i>			 	1			ļ	·
20 8 20		19 /			1		,030		'		1	\vdash		<u> </u>		
# 23 11 230 23 435 C51 ,028 ,216 ,22 196 65 95 92 3 24 12 240 2143 438 30 ,029 ,234 ,23 165 51 94 91 3				, ,	 - \ 	<u>. 03</u>			* '	_ - '	\vdash	++	 			2
# 23 11 230 2333 435 651 ,028 ,216 ,22 196 61 95 91 3 24 12 240 2143 438.30 ,029 ,234 ,23 165 51 94 91 3		21 9				.11		 	1 6			++				1
23 (1 20 2143 438.30 ,029 ,234 ,23 165 5 194 91 3 24 12 240 2143 438.30 ,029 ,234 ,23 165 5 194 91 3	مه			1000							T 7	+			1	
25 Lieuna P. M. Sheck Ph. Resumed at 1850	K				1435	<u>.651</u>		+	 	-	-	+-				
Notes: 1850 Notes: 1850 Rishared files Florid Days Shedwighted 5 PDX-V1.pdf y 2130 > Paused to check Ph, Resumed at 1850 Rishared files Florid Days Shedwighted 5 PDX-V1.pdf y 2130 > Paused to check HORIZON ENGINEER IN 2163702		24 12	240	2143	1450	30	1001	1634	123	162	+	+-	101		11	<u></u>
Notes: \$ 18407 Vauged to Check the Constitution of the thought of				<u> </u>				() i		1 51	1 // Q	- <u>ا</u> - دی کرد-	e) at	 1850	<u> </u>	1
			files\F l eId\Dat	n Sheets Metho	of 5 Method 5	_PDX-v1.pdf	p 1590ラ b 2130ラ	Paused of	to chec	1c +16)RIZ(G	MEM.	SINEER	EINPEL PA	3 5₹5702	2

										- '		<u> </u>	7.1.	. A E		ī
	À	ACT SOL.		Vhitaker W	ay .	ONIT	2 ~	, (T.	oliter T. s	Client:	Bullsey Portland Furnac	و (۱۵) ه ارگاه ا	(3)		
		, ,	Portland, C			MAGE	a of	4	F1	icitity Li	Source:	(C) TIBNA	37 C.)		
M	ONT	DOGE	Phone (503			Glass Nozzle M	lagov Pamants		S	imnle La	cation:	Fulet	2 1	•	•	
Algo	COPAULIY	SURVICES .	Fax (503) 2	22-0202			3100		Ducha 2.	~7	(À/a) C	826	4 Hea	t Set -	- °F	<u> </u>
-		16/16				1 -	,3100	1 2103	Post-Test	Pitot In	spection	3		-	⊨damaged)	-
		od CO(ODEQ	4		3	3110	1,5100	Pitot Lk	Rate		Pre: Hi	D @ C	Post C	0.5	1
	neurren 1n#	t Testing	ODEGE	2			17(10_	(in H2O@			Lo (V /	. (65	
	,	T	Support	The H			ALT-011,		Nozzle ,			Oven	Imp	. Outlet	1-35	_
Та	mneret	re Ambie	nt	(Ta) 740		. Std TC (I		83	Filter -					t Set	- °F) 3
Colo Ma	oisture e	1000	Tdb 2	29 Tw	b 114	Stack TC	(ID/°F) 1-2	/83	Meter Bo	x 2	dH@ \	19767			9949	
Pr	ess. Sta	tic (Pstat) "	JO Pro	ess., bar (Po	29.9		uity Check f	or 1	Meter			Pretest:	005	cfm 15		4
Су	clonic F	low Expec	ted ? No	If yes, avg. 1	ıull angle	degrees			Leak Ch		over) t	Post: . ()/O METER	efm 6	inHg Pump	4
	raversc	Sampling Time	Clock Time	Dry Gas Read		Velocity Head in H2)	Orifice Pressure in H2O	Orifice Pressure H2O	STACK	PROBE	OVEN Filter	IMPINGER Outlet	Inlet/Avg.	Outlet	Vacuum	
	Point Number	min	(24 hr)	ent	6	(dPs)	DESIRED	ACTUAL (dH)	°F (Ts)	°F• (Tp)	°F (To)	*F (Ti)	°F (Tm-in)	°F (Tm-out)	inHg (Pv)	
		(dt)	2142	438.			+	, tary	Amb:	Amb:	Amb:	Amb:	Amb:	Anıb:		1
_			2143	750.			000	20	\$4.00		7		011	91	3	7
1	12	250		441.	02	,032	1460	161	1147	(51	77			4
	11	260		e		,039	17227	3623	143		1	51	95	90	3	
2				10.0	70		072	10	136		<u> </u>	1	9<	90	3	1
3	(0	270		<u>447.</u>	59	6040	15/0	131	100	/_	-/		70	70		-
	9	280	2225	450	15	1022	,201	,21	127	/		51	76	71	<u>ځ</u>	_
A	જ	290	2321	453	12	02.2	1103	.18	203			54	95	91	M].
5	7	300		456	(2)	.041	,380	,38	120			66	89	87	3	
.6	1	310		460	14 ,0	H837	.425	,43	147			67	89	86	3	
7	5	320	<u> </u>	463	58	.049	,412	.41	180			66	90	86	3]
8	4	330		466	73	046	.361	,36	226	7	(67	91	86	3]
9	3	340		469	66	,040	1313	,31	227			65	91	85.	3	
10	2	35D				,042	.331	.33	223			64	92	186	3	
11		360		475	80	200,04	3,369	,37	169		1	62	93	87	3	
12	1	370		480	26	,088	157	76	167	1		62	93	87	5_	╛
15	2	380		485	12	1094	,804	,80	172	1/-	17	60		87	14_	
14	3	390		489	875	1 '	,760	176	167			61	96	87	4	
16		400		492	455	1033	.201	.20	61			60	96	87	3_	_
17	7	410	<u> </u>	494	970	.031	.257	,26	189			62	94	187	3	
18	(2)	420			1906	,019	,155	,16	201			63	92	88	3	_
19	7	430		499		.026	,226	,23	160		1/	63	92	87	3	_
20	Q	440		502		,040,	. 359	36	141	1/-		62		88	3	
	م	450		505.		, 638	.335	.34	152			61	92		4	_
2:	2 \ 0	460		1	275	.029	.Xe7	,27	125			61	93	87	4	
19 [3 \ 	470		510	.80	1027	.251	125	180			(0)	<u>92</u>	88	11	_
ļ		486	239	512		,018		,17	_		/	63	92	8.7	3	4
Γ.		490	f 7 7		,							<u> </u>	<u>L</u>		<u> </u>	<u> </u>
4	Notes:			2225	-> & A	+ 282 min	n 10 sec,	panse	1 10	Swill	rh.	out.	rain	3	n. Pi	١

					Ŧ	teid Data	Sheet							
			13585 NE ' Portland, (Whitaker Way OR 97230	PAGE	3 of 8	54	F:	ncility L	Client: ocation:	BOLLSI PORTU PURN	ALD,	JAS	S
	MON			3) 255-5050		f	· ·		umnle I.	Source:	INCE	T ²	' '	
	ADE OUAUL	ACEVILE			Glass Nozzle N 1	. 3100 C	,	Probe 6	1111px 12 2-2	(ĝ) s) C	p .8360	Нея	it Set	-, °F
	Date Test Meth	ing OX		x 1 11x	2	3100	3,3103	Post-Test			1	(NC=no		=damaged)
		nt Testing	M5		3	.3110	5	Pitot Lk			Pre: Hi (Post	@
	Run#	00		TU TC (0		ALT-011		in H2O@ Nozzle , (war and the Control of the Control o		Oven		. Outlet	
	Operator	ture, Ambie		<u>JM,JF, BS</u> (Ta)	– , Std TC (1	<u>жыл-отт</u> ш/°ғ) <u>83</u> ° -	JL	Filter -				Her	ıt Set	→ °F
	Moisture	86	Tdb	Twb	 Stack TO	(ID/T) <u> </u>	<u> 2-2</u>	Meter Be	THE PERSON NAMED IN COLUMN TWO	dH@	.976	The state of the s	and the state of t	9949
	Press., St	atic (Pstat)	30 Pr	ess., Bar (Pb) 29. 9	Contin	nuity Check (or į	Meter Leak Ch			Pretest: C	<u>3.Ου</u>	etm [inHg inHg
	Cyclonic .	Flow Expec	Clock	If yes, avg. null angle_ Dry Gas Meter	Velocity Hend	Orifice Pressure	Orifice Pressure	STACK	PROBE	OVEN	IMPINGER Outlet	METER Inlet/Avg.	METER Outlet	Pump Vacuum
	Point Number	Time min	Time (24 hr)	Reading ouft	in H2) (dPs)	in H2O DESIRED	, H2O ACTUAL	°F	°F (Tp)	Filter °F (To)	°F (Ti)	°F (Tm-in)	°F (Im-out)	inHg (Pv)
		(dt)	24144	514.368	-		(dH)	(Ts) Anib:	Amb:	Amb:	Amb;	Anib:	Amb:	```
¥			04:47	514.000	-2.1	000	00	156	1	1	62	81	79	3
	1	490	<u> </u>	517.11	034	1293	.29			H		82	79	3
	2	500	<u> </u>	514.443	033	.189	.19	150		+\-	63	1	79	-
	3	510		522.537	1.039	. 328	.33	173	_ _	igwedge	60	84		3
	4	520		524.533	030	.172	.17	159	1_		51	80	80	3_
	5	530		5a4.753	023	198_	· 30	160			56	87	180	3
	6	540		529.358	,030	. 258	,26	161			57	87	80	3
	7	550		531,579	.O26	. 228	. 23	149			58	87	81	3
	7	560		533 col8	.017	146	4 .15	162			57	86	81	2
	0	570		536,757	.044	.367	,37_	179			57	85	82	3
	10	580		538,989	.022	.182	.18	184			560	860	18L	3
	11	590		541.114	1.019	168		140			57	86	80	3
	12	600		5-13.239	-013	.159	16	HQ			50	85	82	3
	r 12			545,363	.018	.158	21.	141			67	85	18L	3
1	4 11	(020	57.0	547.382	0017	,150	15	143			56	80		3
•	\$ 10	630	72	549.605	.023	,200	,a0	53			59	184		3.
	1 9	1040		552.10°	1.0276	, 238	, 24	158		$\bot \bot$	58	84	BL	3
	1/8	1050		554.175		.181	1.18	1129		<u> </u>	57	85	82	3
	8 7	660		556.566	,035	,224	(22	30	11_	11	58	185	181	3
	9 60	670	1	568.300	.015	. (33	13	140		$\bot \bot$	58	86		3
	1 5	680		569,973	1014	-122	1.12	15	<u> </u>	 	59	860	181	3
	2 4	690		66/1650	,015	1139	.13	149	$\overline{}$	1 1	(0)	87	82	3
	23	700		568.749		1,185	1,19	148		1.1	(60)	181		
	3 A	110		5493	,015	1.132	13	150	1 1		0	86		3
	4 1	720		561.165	1014	.123	112	149		11	(a2			3
	25	730		568.63	1.012	109	, 0	170	<u> </u>	1	62	187	83	3_
	Notes:			·						1				

Brishared files/Field/Data Sheets/Method 5-Method 5-PDX-V1.pdf

HORIZON ENGINEERING 16-5702

KEAIL CHULL TRANSE FROM 512.9122 - 514.368

			Whitaker Way	~ 5	1 -0	. ſ		1114 T	Client	-BUILD	EYE .	GLAS	5
MON	TROSE		3) 255-5050	Glass Nozzle N	4 of	4		acility L	Source:	FUZZ		93	
			4121116	1	L. 8. 34	•				p,8264	·	at Set	~ °F
	hod Ook		11301137	2	746O	. (SOS)	Post-Tes				- Americal Majorical	hours .	damaged)
	ent Testing			3	-7410	J	Pitot Lk	Rate		Pre: Hi		Post (
Run#							in H2O@			Lo			
Operator			28, 97., MT		ALT-011	er.	Nozzle			Oven **			<u>1-35</u> - °F
	ture, Ambie	ent <u> </u>	Twb		ш/°ғ) <u>733°</u> С(ш/°ғ) <u>733°</u>		Filter — Meter B		dH@	. 976		t Set -	- 19949
Moisture			ress., Bar (Pb) 29, 9		nuity Check (*	_	Meter		unw	Pretest:			
			If yes, avg. null angle_		nunty Check	Jor ↑	Leak Ch			Post:O.		cfm /s	
Traverse	Sampling	Clock	Dry Gns Meter	Velocity Head	Orifice Pressure	Orifice Pressure	STACK	PROBE	OVEN	IMPINGER	METER. Inlet/Avg.	METER	Pump Vacuum
Point Number	Time zoin	Time (24 hr)	Rending cult	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	*F	۴	Filter °F	Outlet *F	"F	Outlet "F	inHg
	(dt)		(Vm)			(dH)	(Ts) Amb:	(Tp) Amb:	(To) Amb:	(Ti) Amb:	(I'm-in) Amb;	(Tm-out) Amb;	(Pv)
<u> </u>					3 6 .		•			l	~	2 /	_
12	740	i	570.4710	V <u>1</u>	.146	15	101	\leftarrow	1	6	87	84	3
13	750		6/Q.584	' <i>O</i> 3[1183	81.	159		<u> </u>	60	81	83	3
3 4	760	09130	574.147	<i>.060</i> ,	.173	.17	158			58	87	84	3
5	770		•					1					:
16	780												
4 -7								1			,		
18													
9							-						
10		,	•										
10 L	`		•	⁷ 4.									
ца			•										
12			•								<u> </u>		
			,				ļ						
<u> </u>			• •		•			444			<u> </u>		
10									1		<u> </u>		
15			. ,	·					Ц_	<u> </u>	<u> </u>		
17								-					
9													
20			,		W. 1.444								
2													
2													
23					,						ļ		
2											<u> </u>		
25											<u> </u>		
Notes:								J	f				

Heat Set -

Heat Set "

(NC=no change, D=damaged)

Imp. Outlet \-35

a

Press., St	atic (Pstat)	-0.3Pr	ess., Bar (Pb) 30. 10	Contin	uity Check 🐧)or↓	Meter	1001	e 7)		2012		
Cyclonic	Flow Expec	ted? No	If yes, avg. null angle				Leak Ch		OVEN	Post:	METER	efm METER	inHg
Traverse Point	Sampling Time	Clock Time	Dry Gas Meter Reading	Velocity Head in H2)	Orifice Pressure in H2O	Orifice Pressure H2O	STACK	PROBE	Filter	Outlet	Inlet/Avg.	Outlet	Vacuum
Number :	min	(24 hr)	cuft (Vm)	(dPs)	DESTRED	ACTUAL (dH)	*F (Ts)	°F。 (Tp)	°F (To)	°F (Ti)	F (Tm-in)	°F (Tnr-out)	inHg (Pv)
	(dt)	1730	575 268			ţy	Amb:	Amb;	Amb:	Amb:	Amb:	Amb:	
, 1	10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,036	,122	,12	14/			67	78	78	2
, 2	20		579.55	,053	,205	,21	147			62	80	78	2
3 3	30		581.95	,055	,206	,21	166			59	81	78	2
4 4	40		583.76	,031	,121	112	197			57	84	79	2
5 5	50		585.74	,040	,155	116	203		/	58	84	80	2
6 C	9		587.71	,035	,141	,14	182	((56	86	82	2
7	70			,040	,175	118	129	\		56	87	83	2
s B	-80		591.98	,038	,152	/15	186	}		56	98	84	2
, 9	90		593.87	,033	,132	,13	188			56	89	84	2
10 V	100		595.91	03G	.142	,14	195	/	/_	<u>58</u>	89	85.	2
ս ()	110		597 77	,033	1129	,13	204	<u> </u>	_/_	56	89	86	2
12 12	120		599.52	,030	,114	,)	226		//	57	89	85	2
13 /2	130		601.70	,044	,181	,18	169	1	<u> </u>	58	88	85	2
14	140		603.56	,035	,149	, 15	149		1	55	89	86	2
15 \0	150	2000 2004	605 697	,035	147	,15	159	_/		57	89	85	2
16	160		608.13	,045	,183	18	176	-/-		54	88	86	2
17 8	170		610.26	,034	139	,14	173		/	55	89	85	
18 7	180		612.25	,036	1151	115	161	 	/	56	90	8C	2
19 6	190		613.91	,022	,092	,09	160		/-	56	-	86	2
20 5	200	<u> </u>	613.59	,023	,100	,10	134		-	58 58	90	86	2
21 4	210	<u> </u>		,023	1092	,09	188	-	1	 	90	86 86	
22 7	220	<u> </u>	618.68	,021	,080	,08	218	 	$+ \rightarrow$	58	89		2
23 2	230	<u> </u>	620.15	,020	,077	708	217	/	-	58	89	86	2
24	240	2134	621.77	,028	,107	/11	219	-	1/	58	01	8.7	2
1			l		ļ				1 \		L	1	

Notes: used the stack temp, of the ODEQ 5 for point \$12 because the thermocouple was out of the stacke B: (Shared files) Field (Data Sheets) Method 5 Individual 5 PDX-V1.pdf Paused at 150 min, to check the ph (2000)

MONTROSE

Test Method OOC

Moisture ~ 400

Date 4/27

Run# 2

HORIZON ENGINEERING 16-5702

				ı	ï.	Telu Data	<u>энеег</u>		- PA	19E	20	4	
r	Δ	4.	13585 NE V	Vhitnker Way				, t	Client: ()	ullseye	Gla 55		
İ		A Total	Portland, C	= -				Facility Lo	cation: 🖟	ertlevel,	الالا		
	MONIT	, '	Phone (503)	1					Source: {	WNAGE	-4-7		-
	MONT	KUSE V VIRVICIA	Fax (503) 2	55-0505	Glass Nozzle M		•	Sample Le			Hagi	t Set	~ °F
-	Date \[/2				1 2	<u>, 2580 \</u> , 2580	> 2583	Post-Test Pitot In		104-10		change, D=	
_		nt Testing			3	12590	,	Pitot Lk Rate		re: Hi (@
_	Run#2		ODVOC			1000		in H2O@in H2O		Lo (3@12	-	@
-	Operator		Support 3	Jie H.		ALT-011		Nozzle , 2583	. (Oven -		. Outlet	
-	Temperat	ure, Ambie	nt ((Ta) 75°F		Ф/°F) <u>П/</u>	75	Filter -	ave i	<i>ልግ ነገ</i> ተ		t Set Y 0,99	erre E
		<u>~35/0</u>		56 Twb 95		(ID/°F) 2-1	174	Meter Box 2	<u>ан@ ∫ı</u>	retest;		ro, t	
	Press., Sta	etic (Pstat) Flow Expec	ー 0, 3 Pre ted 2 A R。	ess., Bar (Pb) 30, 1 If yes, avg. null angle		mity Check	or 1	Leak Check		ost:		efm	inHg
Γ	Traverse	Sampling	Clock	Dry Gas Meter	Velocity Head	Orifice Pressure	Orifice Pressure	STACK PROBE	OVEN Filter	IMPINGER Outlet	METER. Inlet/Avg.	METER Outlet	Ришр Vасиию
	Point Number	Time min	Time (24 lu)	Reading cuft	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	°F °F.	°F	°F (Ti)	°F (Tm-in)	°F (Tm-out)	inHg (Pv)
		(dt)	aiau	(Vm) (Vm)			(dH)	(Ts) (Tp) Amb: Amb:	(To) Amb;			Amb:	(,,)
-			2134	621.77		100	s t Á	191		<u> </u>	89	<u>8</u> 7	2
ł	<u> </u>	250		623.74	,035	,139	, 14	191	 		<u></u>	<u>-</u>	
	2 2	260	2156	625.73	,033	,143	, 14	163		56	89	86	2
7	3	270	2159	62797	,029	,126	,13	156		56	89	861	2
ŀ	3 /	280		C3-1-1	.023	1099	10	167		52	89	86	2
ŀ	4 7	290		63150	,022	.093	,09	186		S 5	89	86	2
	5 <u>0</u>	300	2241	633 14	,022	.090	.09	213 /	/	57	89	86	2
7	7		2310	124 58	,018	071	07	224 /	7	58	89	86	2
ŀ	, / , 8	310 320		636 74	.038	166	.17	156		60	85	85	2
	s 0	330	2339	639.40	1055	.245	,25	144		56	85	85	2
*	10 (0	340	2343	642 20	,058	,251	,25	162		52	86	83	2
\geq	11 ()	350		644.81	,059	.245	,25	187		53	86	83	2
1	12 \2	360	0009	647.37	,066	,265	,27	211 /		52	87	83	223
	13/2	370		650.04	,064	,253	,25	221 /		51	87	83	3
	14	380		652.71	,060	,235		227/	/	51		83	3
	15 \0	390		655.41	,065	,270	.27	188	(.	63		83	3
	16 A	400		657.	,042	185	,19	151		52		83	
	17 8	410		659.90	.044	, 198	,20				87	83	2
	18 7	420		661.71	,022	,098	,10	145	 	54	87	83	2
		430	<u> </u>	(663.40 ²)	,021	,094	,09	139 /	 	56	87	83	2
	20 5	440	ļ	WH1.885	,030	.0898	' 03	139 /	 / 	<u>50</u>	87	88	8
	21 4	450		666 86	1015	,062	,06	190 /	/	56	86	83	2
	22 3	460	<u> </u>	667,628	1	.08Ce	,00°,	209	1	<i>5</i> 7	86		<u>م</u>
	23 2	470		(do 8.985)	1080	,079	80,	<u>881 \</u>	+	5 L	86	2 2	<u>ス</u>
	24	480	03:00	670.246	-019	.03	,679	189	 	50	100	100	3
	25		1	<u> </u>	1 (,		1910		<u> </u>	L	<u> </u>	<u> </u>	
	Notes:	1 2621	mh a	paused to a	check ph	7/010	(2106)	, HORIZO <u>I</u>	N ENGI	NEFR	NG 16	5-5702	More
	B:\Shared i	nies\Field\Data	a sheets/Metho	to allow pla	at person	211 fo 0	wap./2	2241) ->(Lesum	ed	1/2	310)	01
1	M)か。</td <td>\ -</td> <td>, rocaszą-</td> <td>In some big</td> <td> [: H</td> <td></td> <td>-1,70000</td> <td>,</td> <td></td> <td></td> <td>~ (</td> <td>- • /</td> <td>اممیا</td>	\ -	, rocaszą-	In some big	[: H		-1,70000	,			~ (- • /	اممیا

PAGE 3 OF 4

	<u>Field Data Sheet</u>	PAGE 3 OF 4
å 13585 NE Whitaker Way		Client: Bullseye
Portland, OR 97230		Facility Location: Postland, OR
Phone (503) 255-5050 MONTROSE For (503) 255-5055	·	Source: Furnace T-7
AIR QUALITY MENTERS PRE (505) 455-USUS	Glass Nozzle Measurements	Sample Location: Inlet Probe 2-1 (44) Cp . 8048 Heat Set - °F
Date 4 27 16 - 428 16 Test Method ODG	1 2580 Terlons 2 3580 2583	Post-Test Pitot Inspection (NC=no change, D=damaged)
Concurrent Testing M5	3 3670	Pitot Lk Rate Pre: Hi O @ OPost @
Run# 2		in H2O@in H2O
Operator BC Support JM JF BB	ALT-011 Std TC (ID/°F) 75° (32.	Nozzle , 2583 Oven Imp. Outlet Filter Heat Set "F
Temperature, Ambient (Ta) Moisture ~ 3 % Tdb Twb	Stack TC (ID/°F) 74° 2-1	Meter Box 2 dH@ 1,97675 YO.99949
Press., Statie (Pstat) - 0.3 Press., Bar (Pb) 30.1	Continuity Check (1) or 1	Meter Pretest: O cfm 7 inHg
Cyclonic Flow Expected ? N If yes, avg. null and		Leak Check Post: cfm inHg InHg STACK PROBE OVEN IMPINGER METER METER Pump Pu
Traverse Sampling Clock Dry Gas Meter Point Time Time Reading	in H2) in H2O H2O	Filter Outlet Inlet/Avg. Outlet Vacuum
Number min (24 hr) cuft (dt)	(dPs) DESIRED ACTUAL (dH)	(Ts) (Tp) (To) (Ti) (Tm-in) (Tm-out) (Pv) And: Amb: Amb: Amb: Amb: Amb:
02/38 470 241		
1 490 671.663	80, 250, 710.	138 / / 56 82 83 2
2 500 673.173	0.19 890, 650	140 1 58 84 82 2
3 510 674.598	PO, EPO, 160, 1	143 \ 50 84 81 2
4 530 675.813	0,016,073,07	130 \ 67 85 81 2
, 530 (077.088	80, 170, 710,	133 / 157 84 82 2
6 540 (078.319	7 .015 .067 .07	134 / / 57 85 82 2
7 550 (79.73	01. 290. 150.	127 / 58 85 82 2
: 500 CB1,490	030 132 13	49 \ 58 84 81 2
, 570 683,56	3 .036 .156 .16	156 \ 58 85 81 2
10 580 685.00	11, 801, 320,	159 56 84 81 2
1 590 686.52	6,000,095,10	160 / 757 84 81 2
12 600 688.09	3 ,023 ,100 ,10	FB / / 58 84 80 Q
F12 610 689.716	.002 .095 .10	161 / 67 84 81 2
411 620 691.37	1,027,117,12	158 / 58 85 81 2
610 630 692.98		159 \ 58 85 82 2
19 640 (84.59)		165 \ 57 86 82 2
8 650 6 696.289		153 57 84 81 Q
	11, 201, 1460, 0	156 / 50 84 81 3
1 1 - 1 - 		149/ /58 82 79 3
5 680 . 700,240		148 / 59 83 79 3
4 690 701.43	1015 ,067 ,07	140 60 84 80 3
3 700 702.44	5 .014 .063 .06	137 \ 60 83 79 3
2 710 703.583	 	145 60 83 80 3
1 720 704.72		139 / 60 82 79 3
1 730 705.86	000,013 ,058 ,000	142////6/182/79/3

Notes: X PAUSED FOR PH CHEW @ 05:30 8:\Shared files\Field\Data Sheets\Method 5\Method 5_PDX-v1.pdf

4

13585 NE Whitaker Way Portland, OR 97230 Phone (503) 255-5050 MONTROSE Fax (503) 255-5055 Date 4 27 16 ~ 428 16 Test Method OC / Concurrent Testing M5 Run #2 Operator & Support M. JF. & Twb Temperature, Ambient (Ta) Moisture 76 Tdb Twb Press., Static (Pstat) 0, 3 Press., Bar (Pb30. O Cyclonic Flow Expected ? M. If yes, avg. null angle.					2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				Facility Location: COTLAN, OR Source: FULLACE T-7 Sample Location: CHET LUTCH-5/9//c Probe 2-1 (EAS) Cp. 8248 Heat Set - °F Post-Test Pitot Inspection (NC-no change, D-damaged) Pitot Lk Rate in H2O@in H2O Lo 5 @12 O @ 62 Nozzle 2583 Oven Imp. Outlet -35 Filter Heat Set - °F Mcter Box 2 dH@ 1.97675 Y O.9940 Meter Pretest: O cfm 7 in Hg Leak Check Post: O cfm 5 in Hg STACK PROBE OVEN IMPRIGER METER Fump							
Traverse Point Number	Sampling Time mln (dt)	Clock Time (24 hr)	Dry Gas Meter Reading cuft (Vm)	i	icity Hend in H2) (dPs)	Orifice Pressure in H2O DESIRED	H2O ACTUAL (dH)	°F (Ts) Amb:	°F. (Tp) Amb:	Fi	iter F 'o)	Outlet °F (Ti) Amb:	Inlet/Avg. °F (Tm-in) Amb:	Outlet °F (Tin-out) Amb:	Vacuum inHg (Pv)	
ય	740		707.03	<u>ا (</u>		, 075	, 0 <u>8</u>	143	1	1/		ω		80	3	
3	750		708.100) , (امالا	050,	.07	149	1_	Щ		60	83	79	3	
4	760		709.301		710	. The	ॅंठिंड	141	\perp	\prod		0	83	79	3	
5	770		710,796		231	.95	01,	133			•	6	82	80	3	
	780		712 296	ì , c	124	এল	, II	139				60	82	79	3	
7	790		712 1056		21	.092	. 09	150	T			00	81	78	3	
 	800		714 757		حاد	150,	.07	142	T^{-}			60	$c\beta$	78	3	
8	810		715, 24	<u> </u>	2/0	071	.07	139	Γ		T	S	18	78	3	
10			717 File	- 	331	.137	, 4	141				6	80	78	3	
	<u>පිටෙ</u> දිනි		710 20	`	039	128	13	143	T			60	81	78	3	
1	<u> </u>		770 25		<u>w. 1</u> 215	dolp	,07	146	1	\Box		6	82	78	3	
16	840		100.0	- - - - - - - - - - 	016	150.	107	115	1	廿		Col	82	79	3	
<u> 12</u>	850		121.460	 	318	180,	80,	136		 		(e)	82	78	3	
1 ()	860		100 01 C	-		1001	112	134	十	 	\vdash	(A)	82	79	3	
10	870		124,44	7	<u>00(0</u>	100		133	+	╌	十	(A)	82	<u> </u>	3	
1 G	680		726.131		0009		.13		-	-	+	•	82	79	3.	
1 G 1 8	890	প্রত	726.73	3 1	030	135	124	134	-		+	63	00	17	<u> </u>	
17							· ·	_		-	-	<u> </u>	!	 		
1 6		<u></u>					<u> </u>		$\vdash \downarrow$	_		_		 		
15										_ _	_		ļ	-		
1			,						$ \downarrow $	_ _	_		 	<u> </u>		
24			•								1_	<u> </u>	<u> </u>	<u> </u>		
2										\perp	1		<u> </u>	ļ	<u> </u>	
77												<u> </u>				
	<u> </u>								\prod		L					
1	 	 	 													

					<u> </u>	TCIG Data		YH6-	ع ا ت	7				
		13585 NE W Portland, Ol		ľ	ر لمالماط الم	bull, Dry=208 20 gg Facility Location: Portland, OR.								
		Portiana, O. Phone (503)			<u> </u>	we4= 115	- 6.6-		Source	: Furnace	e' T-7			
MON	TD7366	Phone (503) Fax (503) 25		6	Flass Nozzle IV	L easurements		Samp	le Location	: Iulet				
Data U	128/16	1.4% (200) To			\bigcup_{1}	2580	Teflon	Probe 2-2	(g./s) (Cp,836	Heat		~ °F	
Test Met	hod OOG	31			2 .		2583	Post-Test Pit	ot Inspectio	n	(NC-no c	hange, D=	damaged)	
Concurr	ent Testing (DEQ S	<u> </u>		3	2590/	1000	Pitot Lk Rat		Pre: Hi			@	
Run#	•	<u> </u>						in H2O@in I			0 @ 16		@	i
Operator	Johnes	Support 2	SDE H,			<u>ALT-011</u> D/℉) <u>コレ</u> /	DOCT	Nozzle 12	583	Oven		Outlet \	- °F	
	ture, Ambie	nt <u>(</u>	Ta) 86º4		. Std TC (I	D/ºF) <u>コレ /*</u>	1000	Filter —	2 dH@	1976			19949	
Moisture	~ 30/0	Tdb ←	Twb -			(ID/°F) 2-2		Meter Box	Z unw	Pretest:		cfm 8	inHg	ĺ
Press., S	tatic (Pstat) •	- ,3 Pres	ss., Bar (Pb) 56		Contin	uity Check f	or 1	Leak Check		Post:		cfm	inHg	l
Cyclonic	Flow Expec	ted ? <u>100 1</u>	f yes, avg. null a	ingre	Velocity Head	Orifice Pressure	Orifice Pressure	L	OBE OVEN	IMPINGER.	METER	METER	Pump	ĺ
Traverse Point	Sampling Time	Clock	Reading		in H2)	in H2O DESIRED	H2O ACTUAL	°F,	Filter F· F	Outlet "F	Inlet/Avg. "F	Outlet *F	Vacuum înHg	
Number	min (đť)	(24 hr)	cuft (Vm)		(dPs)	DESIRED .	(dH)	(Ts) (T	Tp) (To)	(Ti) Amb:	(Tu-in) Amb:	(Tm-out) Amb:	(Pv)	
Ì	(4)	1700 -	727 . 15	56				Amb: Amb:	: Amb:	Auto:	Zinto.			
10	1	 	719 7	4	020	172	17	151 /	/ /	66	85	84	2	1
1 12	10		101.2	1	,039	1112	<u> </u>	 						İ
2 (1	20		<u>731.3</u>	G	,037	,163	,16_	153 (_	65	85	84	2_	
, (D	30		733.5	0	,041	1169	117	197		65	86	84	2_	
, 9	40		738.4	8	,032	,131	,13	202		65	88	85	2	
<u>*</u> &	90		737.1	5	,021	,087	,09	198		64	90	87	2	
3	60		738 8	2	,026	1102	,10	196	7 1	63	92	87	2	
⁶ /	70		740 C	.0	,025	108	, []	153 /		62	93	89	2	<u> </u>
8 5	 		742 7	6	,027	,102	,10	236		62	95	90	2	
8 <u>></u>	90	 	744 2	7	,043	161	,16	249		63	95	91	2	
9 -	1		<u> </u>	9	,031	116	,12	252	11	60	96	92	2	1
₁₀ う	100	<u> </u>	714.1	70	~ 4 1	.227	,23	256	1	62	97	93	3	
11 2	110		761 (<u>~</u>	1061	,282	,28	187		58	98	93	3	1
12	120	<u> </u>	7 0 7 10	0	067	_		174	+	50	100	94	3	4/; 4/;
13	\ <u>}</u> 0		754.6	3	1300	,305	,31	' ' ' -	+H/	56	100	94		16
14 2	146		757.3		,062			242	- /-		100			†
15 3	150	1930	760.2		,072		,28			55		95		1
16	160	<u> </u>	762.4	1 1		,146	,15	262	- \			95		1
17 5	170		764.7	/	,046		,18	252	\-\	57		95		-
18 6	180		766.7		,030	,119	,12	243	+ + +		98		 	-
18 0	190		768.	72	,030	1137	.14	149	_	57		95		_
€ 20 8	200	,	770.6	38	,030	,139	14			58			3	-
21 9	210		772.	9	.019	,081	.08	189	_ _	57	 	1	 	-
22 \0			773.5	10	,020		,08	223	11/	60	97		2	_
23 11	7 -	2050	775.0		.021	,082	80,	253	III	61	96			_
24 \ 2			778 2		,054	1226				66	194	93	3	
	1 2 10	2.20	, , <u>, , , , , , , , , , , , , , , , , </u>			1								
25			<u> </u>				<u> </u>		(000			77	λic i.	<u> </u>

Dis a vert builb/dky onio or war bet of 115 ~ 6%

A

Notes: Fransel at 2050 to allow plant, personell BYShared flest Field Data Sheets Method 5 PDX-V1.pdf - Resumed testing at 2118

to purge. (230min. of run time) (Also checked HORIZON ENGINEERING 16-5702 the ph at this time)

PAGE 2 08 4

Client: Bullsege Glass 13585 NE Whitaker Way Facility Location: Portlandy OR. Portland, OR 97230 Source: Funger Tar? Sample Location: Inlet Phone (503) 255-5050 Glass Nozzle Measurements Fax (503) 255-0505 (g+s)Cp 8364 Heat Set -Teffer Probe 2-2 ,2580 (NC=no change, D=damaged) Post-Test Pitot Inspection ,2580 Test Method OOG Pre: Hi O @15 Post Pitot Lk Rate Concurrent Testing ODEQ 5 Lo O @ 16 in H2O@in H2O Imp. Outlet | - 20 Glass Nozzle : 2583 ALT-011 Operator July L. Support Jee 4 Std TC (ID/°F) 12/86°F Heat Set Filter -Temperature, Ambient Y 0, 99949 dH@ 1,97675 Stack TC (ID/°F) 2-2 / 86°F Meter Box 2 Moisture ~ 3% Tdb ጮ Prefest: DIO cfm Meter Continuity Check (1) or 1 Press., Static (Pstat) - 0. 3 Press., Bar (Pb) 30. 10 cfm Post: Leak Check Cyclonic Flow Expected ? NO If yes, avg. null angle IMPINGER STACK Orifice Pressure Orifice Pressure Dry Gas Meter Vacuum Inlet/Avg. Clock Outlet Sampling H2O in H2) inHg Time (24 hr) Point ACTUAL DESIRED (To) (dH) (Ts) (Tp) (Vm) 78:23 2128 93 19 20 046ء 250 94 152 040 86 260 2 270 280 209 290 233 300 212 ,02H 310 182 .042 320 165 061 330 58 340 169 50 350 A 351 360 75 222 068 19 1/28/1 370 95 50 232 30 380 92 240 04 390 52 10 94 22 05 1 400 8 94 170 029 94 50 420 93 60 0046 2 1302 220 09 230 \mathfrak{A} to check ph. - Resumed testing at 2332 2331 (359 min, of lesting 2327 at (434 min) 0046 - Leak check OHO HORIZAN ENGENEERING + 66505. 1/2a gel

Signature Sign								*		50						
Phone (ESI) 25.5850 Glass Nozit Measurements Land Science			13585 NE	Whitaker Way					Clien	: Buill	3/6	LASS				
Past Past			Portland, C	OR 97230				Facilit	ty Location	: PORTU	ALT C	经				
Part Part	HORIZ	SING ON	Phone (503					Source: Political Source Sourc								
Total Motified State Sta		· · · · · · · · ·														
Total Conference Total ME S Support Total Color Support Color Color Support Color Color Support Color Color Support Color Color Support Color Color Support Color Color Support Color Color Support Color	Date by	193116	<u>, - 4</u> (2)	1110			SKK.									
Rain P							(
Support St. Cl. Support St. Support St. Cl. Support St. Suppor			MD		,	(3013)	J									
Sector Composition Composition Composition Composition Constitution			Support	THY CH. BS. M	5	ALT-011		Nozzle . 🏖	383	Oven '	- Ուուր	. Outlet				
Press, Staff (Post)	Tempera	ture, Ambie		-	Std TC (
Cyclonic Flow Respect of) dH@			1 100				
Sample S						nuity Check 🗘	or \	L				······				
Number State Number Number State Number Number State Number Number State Number Number State Number Number State Number Number State Number Number State Number Num						Orifice Pressure	Orifice Pressure	L	OBE OVEN							
190 190	Point	Time	Time	Reading	in H2)	in H2O	H20		Filter							
190 837.340 016 071 071 162 / (62 90 88 8 2 2 1 1 162 162 162 163 16	Number		(24 hr)		(ars)	DESIRED		(aT)	(To)	(Ti)	(I'm-in)					
490 839.340 016 071 071 162 62 90 88 2		<u> </u>	02314	827,991				Anib: Ame;	Amo:	Amo:	Auto.					
5万 830.60 019 084 08 160 162 87 87 2 510 833.168 022 038 167 160 833.168 022 030 037 09 170 59 83 86 2 530 834.982 030 037 09 170 59 83 86 2 540 836.070 013 056 000 177 160 88 86 2 540 836.070 013 056 000 177 160 88 86 2 550 837.237 014 010 016 177 160 88 86 2 550 838.152 010 043 041 040				839. 240	0110	STI.	(0)	162/		62	90	\mathcal{BB}	බ			
Si0 833.168 .032 .018 .10 .68	1			OS CO		1					-					
530 833.589 .018 .081 .08 147 (2) 88 86 2 530 834.982 .020 .087 .09 170 .59 88 86 2 540 834.570 .013 .056 .020 .178 .00 .08 .00	2	500		830.600	<u>.019</u>											
530 834.982 .020 .087 .09 170 59 88 86 2 540 836.570 .013 .056 .06 177 60 88 86 2 550 837.257 .014 .060 .06 177 60 88 86 2 550 838.152 .010 .043 .04 183 66 2 550 839.260 .014 .061 .06 167 61 89 86 2 550 840.332 .012 .053 .05 164 59 87 87 2 550 841.442 .016 .068 .07 182 60 89 87 2 550 841.576 .014 .063 .06 147 58 89 87 2 550 841.576 .014 .063 .06 147 58 89 87 2 550 841.856 .015 .067 .07 150 59 89 86 2 511 620 844.856 .015 .067 .07 150 59 89 86 2 512 630 849.745 .014 .063 .06 147 58 88 86 2 513 660 848.646 .014 .059 .061 .08 150 56 88 86 2 514 640 852.987 .012 .056 .06 140 56 88 86 2 514 640 852.987 .012 .055 .067 .06 182 56 88 86 2 514 640 852.987 .012 .055 .06 140 56 88 86 2 514 640 852.987 .012 .056 .06 140 56 88 86 2 514 640 852.987 .012 .056 .06 140 56 88 86 2 514 640 852.987 .013 .056 .06 140 56 88 86 2 514 640 852.987 .013 .056 .06 140 56 88 86 2 514 640 852.987 .013 .056 .06 140 56 88 86 2	3	50		832.168	<u>,039</u>		_0]_	168	1	(vi)	<u>QQ</u>					
530 834.982	4			233,529	.ols	.081	. B	47	1 1	(60)	88	86	a l			
6 540 836.070 .013 .056 .06 178	-			924.982				 		59	88	86	Q			
SEO 831.237 .04 .060 .06 177 66 88 86 2 560 828.152 .010 .043 .04 183 60 88 86 2 570 839.360 .014 .061 .06 167 61 89 86 2 570 839.360 .014 .061 .06 167 61 89 86 2 580 840.332 .012 .053 .05 164 59 89 87 2 59 89 87 2 59 89 87 2 59 89 87 2 59 89 87 2 59 89 87 2 59 89 89 87 2 59 89 89 89 87 2 59 89 89 89 89 89 89 89 89 89 89 89 89 89	3	1		830070	-	15 (45 (45)		· · · · · · · · · · · · · · · · · · ·		T		86				
Sign Size	6			000000						7						
570 839.260 014 061 06 167 61 89 86 2 580 840.332 012 053 05 164 59 89 87 2 590 841.442 016 068 07 182 60 89 87 2 600 843.633 014 063 06 147 58 89 87 2 11 620 844.856 015 067 07 150 59 89 86 2 10 630 846.241 030 091 09 146 00 89 86 2 10 630 845.539 017 076 08 150 56 88 86 2 10 630 849.745 014 063 06 141 57 89 86 2 11 620 849.745 014 063 06 146 57 89 86 2 12 640 849.745 014 063 06 146 57 89 86 2 13 650 849.745 014 063 06 146 57 89 86 2 14 640 852.987 013 056 06 140 56 88 86 2 15 680 852.987 013 056 06 140 56 88 86 2 15 680 852.977 011 049 05 157 57 88 86 2 17 60 855.369 013 057 06 167 59 87 86 2 17 70 856.347 012 055 05 171 69 88 86 2 17 70 856.347 012 055 05 171 69 88 86 2 17 720 856.347 013 057 06 167 69 88 86 2 17 720 856.347 012 055 05 171 60 87 86 2 17 720 856.347 012 055 05 171 60 87 86 2 17 720 856.347 012 055 055 055 057 06 167 059 87 86 2 17 720 856.347 012 055 055 055 057 06 167 059 87 86 2 17 720 856.347 012 055 055 055 057 06 167 059 87 86 2 17 720 856.347 012 055 055 055 057 06 167 059 87 86 2 17 720 856.347 012 055 055 055 055 057 060 87 86 2 17 720 856.347 012 055	7	<u>550</u>		801-901					+							
50 840.332	8	560		838,163				A 110000		T						
590 841.442 .016 .068 .07 182 .60 87 87 2 .00 840.576 .014 .062 .06 155 .60 89 87 2 .012 .060 845.638 .014 .063 .06 .47 .58 89 87 2 .011 .060 844.856 .015 .067 .07 .050 .59 89 86 2 .015 .067 .07 .07 .089 .089 .089 .089 .086 .089 .08	9	570		839.260	<u>,014</u>		,00	1 1								
12 100 848.576 514 362 306 155 160 89 87 2 12 12 12 12 12 13 14 14 15 14 15 14 15 15	10 -	580		840.332	601Q		,05			59	121	1 - X	, , ,			
13 60 848 638 .014 .063 .06 147 58 89 87 2 111 620 844 856 .015 .067 .07 150 59 89 86 2 12 130 846 241 .020 .091 .09 146 60 83 86 2 19 19 19 19 19 19 19	11	590		841.442	.016	<i>800,</i>	,07	183			181	× 2				
1	12	iv D		842.576	10°	, dod	,06,	155		60		 \ 	2			
1 620 844,856 ,015 ,067 ,07 50 59 89 86 2 10 630 846,241 ,030 ,091 ,09 146 60 89 86 2 19 640 847,539 ,017 ,076 ,08 150 56 88 86 2 18 650 848,646 ,014 ,059 ,06 183 56 88 86 2 18 650 849,745 ,014 ,059 ,06 183 57 89 86 2 18 670 850,990 ,017 ,078 ,08 671 66 89 86 2 18 690 852,987 ,012 ,056 ,06 140 56 88 86 2 18 690 852,987 ,012 ,056 ,06 140 56 88 86 2 18 690 852,987 ,013 ,056 ,06 161 59 87 86 2 18 690 852,977 ,011 ,049 ,05 157 67 88 86 2 18 690 18	ษเล	60		843 623	.014	.063	,06	147 /		58	80	87	la_			
10 630 846.241 .080 .091 .09 146	abo .			844.856	,015	.007	.07	150/		59	89	80	2			
9 640 847,539 017 076 08 150 56 88 86 2 8 650 848,646 014 059 06 182 56 88 86 2 1 640 849,745 014 063 06 146 57 89 86 2 6 670 850,990 017 078 08 67 66 89 86 2 6 680 852,987 012 055 06 140 56 88 86 2 4 690 852,977 011 049 05 157 57 88 86 2 3 700 864,138 017 075 08 161 59 87 86 2 2 7 700 856,347 012 052 055 71 60 87 86 2							ر 90ء	140		60	89	86	Q			
8 650 848 640 014 059 06 182 56 88 86 2 1 660 849.745 014 063 06 146 57 89 86 2 6 670 850.990 017 078 08 137 66 89 86 2 6 680 852.987 012 055 06 140 56 88 86 2 4 640 852.977 011 049 05 157 57 88 86 2 3 750 864 138 017 075 08 161 69 88 86 2 2 710 68 855 269 013 057 06 167 69 88 86 2		640				· ·		150		50	88_	86	Q			
1 1 1 1 1 1 1 1 1 1	3 3	 				T				50	88	86	a			
670 850.990 \cdot \c	~-	 		,	, M											
5 680 852.087 .012 .056 .06 140 56 88 86 2 4 690 852.977 .01 .049 .05 157 57 88 86 2 3 755 . 864.138 .017 .075 .08 161 59 87 86 2 2 710 5.58 855.269 .013 .051 .06 167 69 88 86 2 1 720 856.347 .012 .052 .05 171 60 87 86 2	i i	T														
4 640 852.977.01 .049 .05 157 57 88 86 2 3 700 864.138 .017 .075 .08 iv1 69 87 86 2 2 710 865 269 .013 .057 .06 67 69 88 86 2 1 720 856.347 .012 .052 .05 71 60 87 86 2	1						_						1			
3 700 864.138 .017 .075 .08 iv / 69 87 86 2 2 710 56.5865 269 .013 .067 .06 167 69 88 86 2 1 720 18 856.347 .012 .052 .05 171 60 87 86 2	1		<u> </u>									T				
2 710 36 95 855 269 .013 .057 .06 167 59 88 86 2 1 720 13 856.347 .012 .052 .05 171 60 87 86 2		Τ		854,138								-				
1 720 13 856.347 ,012 ,052 ,05 171 60 8786 2											8R	Г.				
		720	1773			<u> </u>	" .				7					
		730			1015	, dolo	.07	163					1			

Notes:
B\Shared files\Field\Data Sheets\Method 5\Method 5_vz.pdf
PAUSE For pH CHERC

					•	· · · · · · · · · · · · · · · · · · ·		* 1	ICK-	US	- 1					
			13585 NE	Whitaker Way						Client	Bours	DE.	4 AS	خ		
	****	氢		OR 97230	,		1	F	acility L	ocation	PORTU	AND	*			
	HORIZ		Phone (50 Fax (503)	3) 255-5050	Class Names a	Measurements		Source: FRINCE T-7 Sample Location: (NLET								
ı	Date 4	128/16			Giass Nozzie I	\mathcal{COBSL}_{i}) 1	Probe Q - 2 (g/s) Cp , 3364 Heat Set - °F								
,		thod 55(2	3530	28BC, <	Post-Test Pitot Inspection (NC=10 change D=damaged)								
		ent Testing	MG		3	્રકંજું (Š	Pitot Lk Rate Pre: Hi 5 @ Post 0 @ 7								
	Run# 2									in H2O@in H2O Lo 🔾 @ 6 🗘 🗘 @ 6						
	Operator	r (C) iture, Ambi		JM.CH.BC.PB (Ta)	ር የታለጥር (<u>ALT-011</u> ™°F) 86°	۵L.	Nozzle 2683 Oven Imp. Outlet - 20 Filter - Heat Set - °F								
		~3%	Tdb	Twb nes		C (ID/°F) <u>(36</u>		Meter B		dH@	1,976			949		
				ess., Bar (Pb) 30-10	Conti	nuity Check (Mete	r		Pretest:(Dic.C	cfm	inHg		
-1	Cyclonic Trayerse	Flow Expe	cted ? [\]	_If yes, avg. null angle_	degrees	Orifice Pressure	Orifice Pressure	Leak Ch	eek PROBE	OVEN	Post: O	OIL METER	efm METER	∂ inHg		
	Point Number	Time ngin	Time (24 hr)	Dry Gas Motor Reading cuft	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	. STACK	°F	Filter *P	Outle! "F	Inlet/Avg.	Outlet	Pump Vaorum inHg		
	Number	(dt)	(24 m)	(Vm)	(ars)	DESIRED	(dH)	(Ts)	(Tp) Amb;	(To) Amb:	(Ti)	(Tm-in) Amb:	(Tm-out)	(Pv)		
				*	ļ			Amb;	Amo;	Amo.	Amo,	Alito:	Amo.	-		
	3	740		858,599	.013	,057	,06	162		1	60	88	86	Q		
	3	750	·	859.634	.012	, 053	os,	163		/	58	87	8E	ર		
	il	760		860,785	.012	.053	.05	159	1	<u> </u>	58	80	8	<u>a</u>		
	5	770		862.156	015	dolo	.07	161		1	53	860	84	હ્ય		
	W.	780	श्र ेख	803.5KQ	~ 018	OP.	708	161			57	87	84	\mathcal{A}		
×	47	790	573	04-14-100	.013	1050	·do	179	$oldsymbol{\perp}$		58	87	84	2		
	18		20	COK 9308	<u>, 020 </u>	<u>085</u>	.09	183			57	87	85	3		
	9	810		867.738	-033	101	.10	134	1		53	87	35	2		
	d to	830		869.29	2019	150,	.09	140			57	88	35	Q		
	b 1	830		870,403	<u>.al</u>	.05B	·00	138	igwdap		59	88	86	کے		
	<u>112</u>	840		871.714	.015	150	.07	190			58	83	86	2		
·	13	850		813.100	.016	,015	80,	124			60	89	86	ಎ		
	3 1)	860		874.597	1019	.089	.09	121	_	$\perp \perp$	Col	89	87	2		
	¥(O	870		875.917	,016	,073		145				90	86 86	2		
	\$9	880	OFFO	825.208	:014	·ole!	106	163			60	89	86	Q		
	18	390		,				ļ		 						
		<u>B100</u>				<u> </u>		ļ		1				,		
.	<u>. 6</u>	,			ļ ·			ļ			ļ					
ļ	15			•				<u> </u>			<u> </u>					
]	4							,								
	2 3			•					1		<u> </u>					
	2 <u> </u>									<u> </u>						
I	2 5	1		•												
S. Carrier	2															
- 1	2								/							

Sample Recovery Worksheet

Client: Bullseye Facility Location: Portland OR

Operator: TF JH

Date: 4/26 4/27/16
Source: 6/055 Furn 42 e T7

Sample Location: <u>Inlet</u>

Balance Calibration (1000, 500, 200 g)

Need one per each 3-run test

Tolerance must be within ± 1.0% 998 1499 1200

IMPINGER CONTENTS	Gladice Jit RUN 1 a	RUN 216	RUN'S
Container, condensate & rinse, grams	-571 606,d	578	593
Container & condensate, grams	366	385	400
Empty container, grams	104.7	104.2	104.8
Initial volume, ml	300	300	300
Initial contents	5WKOH	KOH	<u> </u>
Initial concentration	0.5 M	0.5M	0.5M
Net water gain, ml			
Condensate appearance	Clear	Clear	<u>Cheur</u>
Level marked on container			
pH of condensate	-9	~ 9	~ 9.5
Rinsed with	DI 40/6	IN HNO3-	
Solvent Name and Lot No.	DI 40: 2122		
Solvent Name and Lot No.	HNO3, 1856.	,	>
CHICA CEL (w/impinger ten off)		-11/07/16	
SILICA GEL (w/impinger, top off)	701 (41	JUS 765	94/

SILICA GEL (Willipinger, top on)
Final weight, grams
Initial weight, grams

Net gain, grams

79 i	6.40	54/2710 765 765	941
<u> </u>	520 G20	SF 520 745	5204.76,4

TOTAL MOISTURE GAIN

Impingers and silica gel, grams

FILTERS

Front filter number Front filter appearance Back filter number

4/26	Purge	Purap
EV 4 B	4/27	Purge 4/27
2237	03:27-03:57 HQR/ZQN/ENGII	09:5 NEERING

Shared files\Field\Data Sheets\Sample Recovery\Sample Recovery_PDX-v1.pdf

Sample Recovery Worksheet

Client	Bullseye	Date: 4/26 - 4/28					
Facility Location:	: Portland OR	Source: _	<i>t</i> 7				
	JF JH	Sample Location:	Inlet				
Balance Calibration (1000, 500, 200 g)	Tolerance must b	oe within ± 1.0%					
Need one per each 3-run test	998 149	9 1200					
IMPINGER CONTENTS	RUN 1	RUN 2	RUN 3				
Container, condensate & rinse, grams		588	656				
Container & condensate, grams		450	463.2				
Empty container, grams		105	104				
Initial volume, ml		300	<u> 308</u>				
Initial contents		KOH	<u> </u>				
Initial concentration		0.5 M	0.5M				
Net water gain, ml							
Condensate appearance	6.	light grn tint	light giee-				
Level marked on container							
pH of condensate		.9.5	9.5				
Rinsed with		DI HO/ HNOS					
Solvent Name and Lot No.		DI 420: 2122-	<u> </u>				
Solvent Name and Lot No.		<u>H203</u>					
	/ \	* - 1					
SILICA GEL (w/impinger, top off)			0 1				
Final weight, grams		830	904				
Initial weight, grams	/ 520 \	JF 520 797	-520 88/				
Net gain, grams		4-28-11					
TOTAL MOISTURE GAIN		·	• .				
Impingers and silica gel, grams							
			•				
FILTERS		al	- 44				
Front filter number		NA	NA				
Front filter appearance							
Back filter number		<u> </u>	U				
		Purge WNZ	Purgo W NZ 09:27-09:57				
Shorad filed Eddi Date Oke ski Sundan		09:45:10:15 HORIZON ENGIN	<i>0年レ</i> リオイラ ' EERIN @:16-5702				
Shared files\Field\Data Sheets\Sample Recovery\Sample Recovery_PDX-v1.pdf		Min	LLINA MANAGEMENT				

					_										
		13585 NE	White key V		Client:	Bulls co	ie Ole	√ SS							
		Portland, ('Yay		,210)	2096	F	eility L	cation:	Billsege Glass Portland, OR				
	11 1 1	Phone (503		, I		209				Source:	Firmao	e_ T	7-		
MON	TROSE	Fax (503) 2	255-0505		Glass Nozzle N	leasurements-	3	S	ample L	ocation:	outle	<u> </u>			
	138/1				1	356 /	l eec	Probe 2-1 (g/s) Cp 2218 Heat Set - °F							
Test Met					. 2	256	,) SS S	Post-Test Pitot Inspection (NC=no change, D=damaged)							
Concurr	ent Testing	5,3A	(gois)	es	3	-255-	>mv	Pitot Lk Rate Pre: Hi (2 @ Post @							
Run#2							4128/16	in H2O@in H2O Lo 🔿 @ 💪 🦸 🤻 @							
Operato		Support	PT J	r 1		ALT-011	7-1-1	Nozzle	يجي (ئير	€ ,209.	Oven —			1-35	
Tempera	ture, Ambie		(Ta)		,	D/°F) <u>^^v /</u>	73	Filter	79	4116	1.7-39	Нея		- °F 18764	
Moisture		Tdb		wb		(ID/°F) <u>2-1 /</u>				анш	Pretest:		efm 5	inHg	
	tatic (Pstat)	l Pr	ess., Bar (P	b) 39.1 null angle_		uity Check)or 1	Meter Leak Ch			Post:		cfm	inHg	
Traverse	Sampling	Clock		as Meter	Velocity Head	Orifice Pressure	Orifico Pressure	STACK	PROBE	OVEN	IMPINGER	METER	METER	Pump	
Point	Time	Time (24 hr)	Re	eading cuft	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	°F	°F	Filter °F	Outlet °F	Inlet/Avg.	Outlet °F	Vacuum ioHg	
Number	min (dt)	(24 m)		Vm)	(un o)		(dH)	(Ts)	(Tp) Amb:	(To) Amb;	(Ti)	(Tm-in)	(Tm-out)	(Pv)	
			463	.489				^{Amb} 135)	7	63	S.S.	Amb: 68		
	10	1700	465	- 29	, o7-	. 11	\sqrt{I}	141	7		40	105	66].	
1	<u> </u>	100	111-	· 7 (11	1 1	()	1 3			; –	
2	20		461	30	,01	111	, 11	139)	<u> </u>	(e)		67	į .	
3	30		469	. , 0 (e 0 60	.10	.10	13a	/	(_	62	 ~ ~ 	100	1	
4	40		470	.400	104	,06	.06	150			62	<u> </u>	68		
5	50		472	.49]	.06	.094	,09.	163	1		65	70	68	1	
6	60		473	.107	,02	.03	,03	167	- \		63	7)	69	(
7	1.10		474	.678	,04	.06	-06	150			64	7	<i></i> 9		
8	120	,	475	.815	-03	0.05	0.05	155	<u> </u>	1	63	72	70		
9	1:30		477	128	.03	,05	,05	170			63	72	70	Ì	
10	1.40		478	. 634	204	.06	,06	172			63	73	71	1	
11	1250		480	.040	, 04	, 36	.06	162	1/		62_	73	71	1	
12	2:as		481	. 504	.05	08	.08	120	\		60	€8	ES	1	
13	2110		483	. 165	. 05	<i>t</i> 08	:08	122			58	68	67	1	
14	2:20	100		.423	, 04	.06	.06	143			57	67	65		
15	2:30		485	. 885	.04	.06	,06	167	- /		57	67	65.	1	
16	2.40		487	244	.04	.06	.06	178			57	66	64	1	
. 17	入:50		488	726	,05	,075	,08	182			57	66		1	
18	2.00		490	. 119	,04	- 06	,, 06	176			57	66	64	1	
19	310		491		a03.	. 046	,05	160			+	65	63		
20	3.20		492		,04	.064	.06	140			57	65	63	1	
21	3:30		493	. 840	,o3	• 24.7	,05	15.5			58	65	63	/	
22	3:40		494	.905	,05	,077	`28	166			53	65	63	1 "	
23	3.50		406	.610	. 05	,076	,08	172			58		63	1	
24	40		497	.256	.01	,015	.02	176).	57			1	
25	4:10			Y 887	10,	.015	් අජ	150	$ \rangle$	5.	58	65	63		

						rieiu Dau	Bucci							
			Whitaker V	Way	• • • • • • • • • • • • • • • • • • • •			F	acility L	Client: ocation:	Bullse	ye G	{0.35 OR	
1)'] ! Tracer	Phone (50	3) 255-5050)						Source:	Furne	rce -		
	TROSE	Fax (503)	255-0505			iss Nozzle Measurements Sample Location:								
	<u> み名/16</u> hod のから	ş				1,20%							at Set	-domacad)
	ent Testing		- (gos	525\	3	Post-Test Pitot Inspection (NC=no change, D=damaged) Pitot Lk Rate Pre: Hi @ @ 6 Post @								
Run#									in H2O@in H2O Lo @ @6					
Operator		Support		ГН		<u>ALT-011</u>	t.	Nozzle . 2096 Oven - Imp. Outlet 1-35						
Tempera Moisture	ture, Ambi		(Ta) T	[wb	,	D/℉) <u>^</u> ^√ C(D/℉) ² ~ \	74 73	Filter Meter B	nx DG	dH@	Heat Set *F			
· <u>-</u> -	tatic (Pstat)	-	ess., Bar (F			unity Check		Meter			Pretest:			5 inHg
				. null angle	degrees			Leak Ch			Post:		efm	inHg
Traverse Point	Sampling Time	Clock Time	Re	Gas Meter cading	Velocity Head in H2)	Orifice Pressure in H2O	Orifice Pressure H2O	STACK *F	PROBE	OVEN Filter	IMPINGER Onflet	METER Inlet/Avg.	METER Outlet	Pump Vacuum
Number	min (dt)	(24 hr)		cuft Vm)	(dPs)	DESIRED	(dH)	(Ts)	°F (Tp)	°F (To)	°F (Ti)	(Tm-in)	°F (Tan-out) Amb;	inHg (Pv)
		ļ		•				Amb:	Amb:	Amb:	Amb:	Amb:	Amo;	
1	4:20		499	.656	,06	,095	-01	151	<u> </u>	_	59	65	63	
2	4 30	ļ	500	.951	.03	047	.05	158			29.	66	64	1
3	4.40		502	. 135	.03	.047	:02	154	(58	66	65	1
4	4:50	Į	503	<u>. 8ኢځ</u>	~05	.081	. N	138	_/_		28	67	63	1
5	500		505	232	105	.079	,08	15		_(_	57	67	65	
6	5:10		506	.616	.04	,062	.06	158			28	68	65	1
7	5:20	-	507	.915	:04	.062	.06	163		\perp	59	68	65)
8	5:30		509	. 440	, o5	.078	`0&	161			59	64	65	
9	5:40.	1	511	.024	· 55	.085	.09	110			57	66	65	
10	5:35	2.11	217	.666	+ 0.5	.085	. 09	140			57	66	64	
. 11	6:00	1.5	514	195	, 0 5	082	.08	127	/_	<u> </u>	57	66	64	1
12	611 <i>0</i>		915	දිග	,96	,097	ļ	135	(57	66	64	1
13	6:20		517	.621	.06	* (0. IO	120	/.)	57	66	64	
14	6:30	·	519	.307	.05	্ ত 🖔	,D8	\$81			56	65		1
15	6:40		520	. 630	,04	.06	.56	152))	56	65		. 1
16	6:50		521	888.	,03	,046	.05	164			57		62	1
17	7:00		523	. 140	.03	:046	که د	167			57		લ્ય	1
18	7:10		524	. 380	.03	,047	.05	18					62	<u> </u>
19	7.20		525	.898	.05	.079	80.	47	<u> </u>	_	57		63	1
20	7:30		527	. <u>3</u> ધ(, 05 e/	,080,	,08 M	139	-	-)	56	65	63 (3	
21 .	7:40			. 235	.06	.096 .099	.10	1/36 12/3	-	5	35 50	64 64	62 62	1
22	7:50 8:00	1:09	531 532	<u>.0 дд</u> . 496	.05	,079	.08	144	1	1	55 54	64	62	<u>'</u>
-	8; lo	1:33		.751	, UT	. 11	ell	190))	55	62	63	-j
	8.20	5.00		315	.07	, 11	11	142		\ ,		64	43	<u>'</u>
Notes:	J. 20	<u> </u>	- 00	, - , -	e	,	L	10.72	1	~ ·	<u> </u>	<u></u>	L	

Votes:

2 of 4

532 496 Check check 532 - 752 ENGINEERING 16-5703 4

A	A	13585 NE	Whitaker Way	 			_		Client:	Bulls	eye '	Gloss	
		Portland,					Fac			Portla			
MON	MONTROSE For (503) 255-5050			Clara Naggia N			Source: Figure Tit						
ATR EQUALITY STRVICES THA (300) 233-0303				Glass Nozzle Measurements			Probe 2- (g/s) Cp + 8248 Heat Set - °F						
Date 4/39/16 Test Method Car C				2	<u>, ३१७ </u>		Post-Test Pitot Inspection (NC=no change, D=damaged)						
	Test Method OOF Concurrent Testing 5, gasses				3 .209		Pitot Lk Rate			Pre: Hi A @ 6 Post @			
Run#							in H2O@in H2O			Lo 0 @6 @			
Operator	r MV	Support	PT, JH		ALT-011		Nozzle	,209	6	Oven 🛥			1-35
Tempera	ture, Ambi	ent	(Ta)		ш⁄°ғ) <u>№</u>	174	Filter			1000		t Set	°F
	Moisture 3 % Tdb — Twb				C (ID/°F) <u>2~)</u>	<u>, 73</u>	Meter Box	Q4		1.7-39		efm is	18764 inHg
	tatic (Pstat)		ess., Bar (Pb) 30. 1	Continuity Check ①or ↓ —_degrees			Meter Leak Cheek			Pretest: ©		efm	inHg
Traverse	Sampling	Clock	_If yes, avg. null angle	Velocity Head	Orifice Pressure	Orifice Pressure		PROBE	OVEN	IMPINGER	METER	METER	Pump
Point Number	Time	Time (24 hr)	Reading cuft	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	*F	°F	Filter °F	Outlet *F	Inlet/Avg. °F	Outlet °F	Vacuum inHg
Number	(dt)	(24 117)	(Var)	(41.3)	DUSINED	(dH)	(Ts)	(Tp)	(To) Amb: 4	(Ti) Anib;	(Tm-in) Amb:	(Tnt-out) Amb:	(Pv)
							Amo; A	, mo.,	Allab.	Amo,	даци.	710.00	···
1	\$:30		537 . 164	403	.048	.05	129	<u>) </u>		56	64	61	1
2	8:40		538 .965	3Ô8	,127	e / 3	135	<u> </u>		57	64	60	<u> </u>
3	8.50		grand and a second property	.07	-111	,11	135			56	64	Ci	<u> </u>
4	9:00		542 499	.67	e1/1	-11	132	_		54	65	62	
5 .	9:10		544.364	.07	ell	.11	(32			55	65	61	1
6	9:20		545.871	07	54[[+11	130	(54	62	60	<u> </u>
7	9:35		547.105	,05	,079	108	129		/	55	64	62	
8	9:40		549 .220	,08	,131	,13	131	\perp		56	64	60	<u> </u>
9	950		550.462	005	.082	.08	133	\perp		55	63	62	
10	10:00		551.631	, 04	,065	,07	133			56	64	61	1
11	10:10		552.789	.03	.049	105	129	$\overline{}$		56	64	62	1
12	10:20		553.571	.03	.049	.05	125	_/_		56	69	63	
13	10:30		555 .037	.03	.049	.05	128			50	63	64	1
14	10:40	_	556,218	03	,049	,05	121	$\overline{}$	 	56	63	63	
15	10:30			D and			131	\perp		54	65	64	1
16	hios	<u> </u>	558.509	1	0082		131	_	/	5.5	64.	64	1
17	11:10		560.005		,649	1	131	-	H	56	63	62	/
18	11:20		561.527	.03	,049	.05	132	1		51	64	62	F ₂₆ 1
19	11:30	<u> </u>	563 .017	003	.049	03ر	134	\		56	62	61	
20	11:40	ļ ·	564,096	<u>.03</u>	.049	05	132	_	/-	54	63		
21	11:50		多5.107	.03	.049	.05	130		 	55	<u> 26</u> ,2		1
22	12:00		366 .062	003	049	005		1	1/	53	-	62	1
23	12:10		567 .288		1049	,05	128	1	 	54	64		7
24	12:20	<u>.</u>	\$68.133	.03	.049	.05	129	-\-	-	52	09	<u> </u>	/
25	12:30		\$69 .003	.03	049	.05	129	(53	62	62	<u> </u>

Notes:

384

HORIZON ENGINEERING 16-5702

Fleid Data Sneet													
MON	TROSE	Portland,	Whitaker Way OR 97230 03) 255-5050 255-0505	Glass Nozzle	Megsurement				Source	: Dullse : Porth : Furno : Our	ice.		
MONTROSE Fax (503) 255-0505 Date 4/29//6				Glass Nozzle Measurements 1 。人〇			Probe 2 - (g/s) Cp , ZIZ Heat Set - °F						
Test Method 5 0061				2 .210			Post-Test Pitot Inspection (NC=nc change, D=damaged)						
	ent Testing			3	,209	-	Pitot Ll			Pre: Hi			
Run#	3						in H2O(@in H2C)	Lo	O @ 6	Ü	
Operato			PT, JH			Nozzle 2096		Oven Imp. Outlet 1 - 3.5					
Temper: Moisture	ature, Ambi	ient Tdb	(Ta) — Twb		. ,			Filter — Meter Box 29 dH@		(m ()		at Set	~ °F
	tatic (Pstat	···	ress., Bar (Pb) 30.1	-					анш	1.73			18:764
			_If yes, avg. null angle	Continuity Check or ↓ degrees		Meter Leak Check		Pretest:		efm	inHg inHg		
Traverse Point Number	Sampling Time min (dt)	Clock Time (24 hr)	Dry Gas Meter Reading out (Van)	Velocity Head in H2) (dPs)	Orifice Pressure in H2O DESIRED	Orifice Pressure H2O ACTUAL (dH)	STACK "F (Ts) Amb:	PROBE "F (Tp) Amb:	OVEN Filter F (To) Amb;	IMPINGER Outlet "F (Ti) Amb:		METER Outlet "F (Tm-out) Amb:	Pamp Vacuum inHg (Pv)
1	12:43		570.251	103	,049	,05	127			52	62	62	
2	12:50		572.113	,03	1049	.05	124)	5 2	61	61	1
3	13:00	ļ	573 .973	.03	.049	. 05	123		/	52	60	61	/
4	13:10		574.149	<i>iO3</i>	.049	.05	127			52	62	61	
5	13:20		575.154	,03	.049	.05	123		<u> </u>	51	61	61	
6	13:30		576.164	.03	.049	.05	123			52	62	61	1
7	13:40		<u>577.172</u>	<i>-03</i>	1049	,05	123			52	61	61	
8	13 50		579 . 223	.02	10328	,03	125			56	63	62	
9	14:00		580 . 435	.O2	0328		125			57	65	64	1,
10	14:10		581.561	,07	9328	. 0.7	125			<i>5</i> g	64	64	
11	14 20		507 127	<i>m</i> 7	0,4,9	00	. 3 2	\rightarrow	-	- A	2 /	2 -	
12	14:30		583 .627	,03	27.6	, 05	123	/	-	58	(0 6	(5	
13	14:50		584.721 585.807	,02	, 328	. 03	118			60		65	3
14	15:00		586.009	.02	,328		119	-}	+-	60	67 67	46	<u>/</u>
15 16	15:10	9500	587.579	.02	328 328	.03	111	1	igg	59	66	66	1
17	15:20	7.00			20	7 0 3				[Q 6	U I	
18	15:30							- }	1				
19	15:40								1				
20	15:50		-						1				
21	16 00		7	r									
22	16:												
23			•										
24													
25			•						\mathcal{T}				
Motori													

Notes:

> Pause @ 7:33.

4 of 4

HORIZON ENGINEERING 16-5702

Sample Recovery Worksheet

Client:	Bullseye	_ Date: _	4-29-16
Facility Location:		_ Source: 💆	loss Funace TI
	SF	_ Sample Location: 🤇	
Balance Calibration (1000, 500, 200 g) Need one per each 3-run test	Tolerance must	t be within ± 1.0% 1991 500 01/	
IMPINGER CONTENTS	RUN 1	RUN 2	RUN 3
Container, condensate & rinse, grams			596
Container & condensate, grams			423
Empty container, grams			105
Initial volume, ml			300
Initial contents		\ 	150H
Initial concentration			0.5 M
Net water gain, ml			
Condensate appearance			Clear
Level marked on container			V
pH of condensate			9.5
Rinsed with			DIHO/HNO3
Solvent Name and Lot No.		1	DIH20:2122
Solvent Name and Lot No.			HN03:1856
Conton Name and Political			
SILICA GEL (w/impinger, top off)	/		
Final weight, grams	/		<u>759</u>
Initial weight, grams	520	520	52 0 736
Net gain, grams			
TOTAL MOISTURE GAIN			
Impingers and silica gel, grams			
FILTERS			4
Front filter number			NH
Front filter appearance			
Back filter number			. 1
			Purge WN2
Shered files\Fleld\Data Sheets\Sample Recovery\Sample Recovery_PDX-v1.pdf		HORIZON ENGIN	Purge WN2 NEERING 16-540210
Attached break laterial access and access an			10 1/nin

EPA METHOD 1

TRAVERSE POINT LOCATIONS					
Client: 150	MSEVE GIMSS	Facility Location: FORTIFIED OR HET Sample Location: ROOF			
Source: _/_ Date:	1-13 Methouse out	HET Sample Location: KOOF			
Date	10116	Initials: Pr Top Ports			
Traverse	Traverse Point	·			
Point	Location	Duct Dimensions and Port Locations			
Number	(inches)	Inside of far wall to outside of nipple, F 14 1378			
1		Inside of near wall to outside of nipple, N 178 1.378			
2		Nearest downstream disturbance, A 271/2			
3		Nearest upstream disturbance, B 6942			
4					
5		Circular: Inside Diameter, F-N 123/8 1214			
6		Rectangular: Width" Depth"			
7	·	Rectangular Equiv. Diameter: (2*W*D)/(W+D)"			
8	,	Number of Ports: 2			
9	,	Duct characteristics:			
10		Construction: Steel PVC Fiberglas Other			
11	· · · · · · · · · · · · · · · · · · ·	Shape: Circular Rectangular Elliptical			
12	· · · · · · · · · · · · · · · · · · ·	Orientation: Vertical Horizontal Diagonal (~ angle:o)			
		Flow straighteners: Yes No			
		Stack Extension: Yes No			
	,	Cyclonic Flow Expected: Yes No			
		Cyclonic Flow Measured & Documented: Yes No			
		Average Null Angle <20°: Yes No N/A			
		Meets EPA M-1 Criteria: Yes No (If "No", explain why)			
Test po	rt sketch or commen	ts			
	V.				

This is The Last Page of the Report

。	